

UGCS SKYHUB

USER MANUAL

INTEGRATED.UGCS.COM SEPTEMBER 2022

Revision History

REVISION	DATE	DESCRIPTION
9	14.11.2022	 Update Echo sounder settings description Added the BDUS Bridge (ROS 2 framework) support description ROS based driver for altimeter SF-30D description ROS based driver for altimeter US-D1 description Updated Navigation parameters description Navigation tuning guideline
8	08.07.2022	 Added the PPS Sync description Updated the Assembling section Updated setup instructions for Geonics EM-61 Changed the MAV/BAUD_RATE default value from 57600 to 230400
7	20.05.2022	 Added the Target Altitude limit of TTF and Grasshopper modes above water for laser altimeter Added the Warnings section Added the RadSys zGPR description Added new parameters to Geonics EM-61 settings Updated the Update Firmware section Updated parameters in the NAV config section Changed the OUTPUT_GPS/FREQUENCY_HZ default value from 1 Hz to 5 Hz Removed the START_DELAY_S parameter from payloads configuration connected via UART/RS-232
6	09.02.2022	 Added UgCS SkyHub 3 Added the Supported Sensors section Added the Lightware SF30/D altimeter description Changed the Description section Removed the Attollo WASP-200 altimeter description Removed the Lightware SF11/C altimeter description Removed the UgCS SkyHub Device section Removed the Kits section

REVISION	DATE	DESCRIPTION
5	13.01.2022	 Added the DJI M300 RTK description Added the ArduPilot/PX4 based drone description Added the DJI Obstacle Sensors Disabling Added the Position Log description Added the Obstacle Avoidance Mode description Added the Echologger ECT D052/D032 description Added the sound speed value to ECT400 Echosounder specification Added the FT Technologies FT742-SM description Added the Nanoradar MR72 radar obstacle detector description Added the Geonics EM-38MK2 conductivity meter description Added the RadSys Zond Aero GPR description Added the GPS Output description Added the Emlid Reach M2 description Changed the DJI Flight Controller Activation description Changed the PRGAM_FALCON/FREQUENCY_HZ description Changed the PERGAM_LMM/FREQUENCY_HZ description Removed the RadSys Zond Lite support Removed Default DJI Credentials (Recommended) section
4	05.11.2020	 Added the True Terrain Following v2.0 settings Added the resuming and pausing TTF from UgCS-CPM description Added the Geonics EM-61 metal detector description Added the IGNORE_ERRORS to common altimeter settings Added the SEG-Y Postprocessing Tool description Changed the MAV/COMPONENT_ID default value Changed the default DJI flight mode for Grasshopper Updated the table of contents Removed the MAX_FLIGHT_SPEED_MPS config parameter

REVISION	DATE	DESCRIPTION
3	03.09.2020	 Added the ArduPilot connection description Added the Grasshopper Mode Added the firmware uninstalling description Added the payload plugin start delay description Added the Lighware SF11/C laser altimeter description Changed default Payload and Autopilot plugins loading settings to false Updated the RadSys Zond description related to the new Lite version Updated the desktop application using description Updated the configuration description
2	29.05.2020	 Added the Gas detector kit description Added the Echosounder kit description Fixed typos
1	20.04.2020	Initial release

TABLE OF CONTENTS

1 · Description	7
Compatible drones	7
Interaction diagrams with drones	8
Supported sensors	9
2 • Warnings	12
3 · Assembling	13
4 • Preparation	14
Prerequisites	14
Setup Interface to DJI Autopilot	17
Setup Interface to ArduPilot	26
Setup Interface to PX4	30
Setup the UgCS SkyHub Device	34
5 · Payloads Setup	36
Altimeter Setup	36
Ground-Penetrating Radar Setup	38
Echosounder Setup	43
Gas Detector Setup	48
Metal Detector Setup	49
Conductivity Meter Setup	50
Remote Water Sampling Setup	51
Anemometer Setup	51
Obstacle Detector Setup	52
GPS Receiver Setup	52
Outputs Setup	55
6 · Getting Started	57
True Terrain Following	57
Grasshopper Mode	61
Obstacle Avoidance Mode	64
About Log Files	66
Log Files Management	73

Update Firmware
Uninstall Firmware
7 • Configuration Parameters 77
UgCS SkyHub Configuration
Autopilot Configuration
Flight Control Mode Configuration
Altimeter Configuration
GPR Configuration
Echosounder Configuration
Gas Detector Configuration
Metal Detector Configuration
Conductivity Meter Configuration
Drop Messenger Configuration
Anemometer Configuration
Obstacle Detector Configuration
GPS Receiver Configuration
Outputs Configuration
Guidelines for navigation values choosing
8 · Legal Notice 109
Disclaimer
Trademarks
Document License

1 · DESCRIPTION

The UgCS SkyHub solution is a hardware and software set designed to enhance commercial-off-the-shelf UAVs capabilities for industrial purposes and to support integration of diverse sensors.

UgCS SkyHub solution functions:

- Data collection from sensors like GPR, methane detector, echosounder, etc. which do not have internal data logger. Data recorded in CSV format as well in the formats compatible with specialized software for sensor data processing and analysis (SEG-Y, NMEA-0183, etc.).
- Data fusion from the payload and UAV telemetry. Data without coordinates (non-geotagged) is in most cases useless. UgCS SkyHub uses the positioning information from the drone to geotag sensor data.
- UgCS SkyHub can supply NMEA coordinate stream to the external sensor. Some sensors have internal data recorders but require an external GPS receiver. UgCS SkyHub can act as such an additional GPS receiver by providing the UAV coordinates to sensors.
- Support for True Terrain Following for DJI drones to automatically keep constant elevation over the surface using real-time data from a radar or laser altimeter.
- Support for Grasshopper mode for DJI drones. The mode provides the flight between waypoints at a safe altitude and descends in waypoints to the set altitude to make measurements (using NDT sensor, echo sounder, etc.) or to drop a parcel or seismic sensor.
- Support for an external detector of obstacles to interrupt the flight and save the UAV, especially if the weather conditions or payload configuration interfere with the built-in sensors on the UAV or the UAV does not have such sensors.

Compatible drones

- DJI M300 RTK
- DJI M600 / M600 Pro
- DJI M210 / M210 V2 / M210 V2 RTK
- · Custom frames based on DJI A3 flight controller
- Drones based on Pixhawk autopilot with ArduCopter or PX4 firmware.

Interaction diagrams with drones

Figure 1.1 – DJI SDK drone interaction diagram

Figure 1.2 - Pixhawk autopilot based drone interaction diagram

Supported sensors

MANUFACT URER	SENSOR NAME	DATA LOGGING ON UGCS SKYHUB	DATA / CONTROL INTERFACE	POWER FEED FROM UGCS SKYHUB	NOTES
Altimeter (used for flight o modes)	control in True Te	rraion-Followi	ng (TTF) and Gra	sshopper (GH	l) flight
Nanoradar	NRA24	YES	UART	YES	Max range: 50 m
LightWare Lidar	SF30/D	YES	UART	YES	Max range: 200 m
LightWare Lidar	SF11/C	YES	UART / I ² C	YES	Obsolete
Attollo Engineering	WASP-200	YES	UART	YES	Obsolete
Ground-Penetra	iting Radar (GPR))			
Radar System	Zond Aero 500	YES	Ethernet	YES	
Radar System	Zond Aero 1000	YES	Ethernet	YES	
Radar System	Zond Aero LF	YES	Ethernet	YES	
Radar System	Zond-12e Drone 500A	YES	Ethernet	YES	
Radar System	Zond-12e Drone 1000A	YES	Ethernet	YES	
Radar System	Zond-12e Dual 1000a	YES	Ethernet	YES	
Radar System	Zond-12e Drone LF	YES	Ethernet	YES	

MANUFACT URER	SENSOR NAME	DATA LOGGING ON UGCS SKYHUB	DATA / CONTROL INTERFACE	POWER FEED FROM UGCS SKYHUB	NOTES
Radarteam	Cobra Plug-In	YES	Bluetooth	YES	
Radarteam	Cobra CBD	YES	Bluetooth	YES	
Magnetometer					
SENSYS	MagDrone R3 / R4	-	-	YES	GPR feed (GPS-out) from UgCS Skyhub
Geometrics	MagArrow / MagArrow-SX	-	-	-	Tested for compatibility with TTF
GEM Systems	GSMP-35U / 25U	-	-	-	Tested for compatibility with TTF
Echosounders					
Echologger	ECT400	YES	RS-232	YES	Optionally USB
Echologger	ECT D052	YES	RS-232	YES	Optionally USB
Echologger	ECT D032	YES	RS-232	YES	Optionally USB
Methane detect	or				
Pergam	Laser Falcon	YES	USB	YES	
Pergam	LMm	YES	UART	YES	Obsolete
Metal detector					
Geonics	EM61Lite	YES	RS-232	YES	
Conductivity me	eter				
Geonics	EM38-MK2	YES	RS-232 / Bluetooth	YES	

MANUFACT URER	SENSOR NAME	DATA LOGGING ON UGCS SKYHUB	DATA / CONTROL INTERFACE	POWER FEED FROM UGCS SKYHUB	NOTES
Other sensors a	nd devices				
FT Technologies	FT742-SM anemometer	YES	UART	YES	
Nanoradar	MR72 obstacles detector	YES	UART	YES	
Emlid	Reach M2	YES	UART / USB	-	
SPH Engineering	Water sampler messenger release device	-	GPIO / PWM	YES	Tested with Ruttner water sampler

2 · WARNINGS

Read this user manual carefully before you use the appliance and save it for future reference.

Δ

In order to avoid damage to components, all connections to the UgCS SkyHub device must be made with the device unpowered.

3 · ASSEMBLING

Assembling instructions how mounting UgCS SkyHub and an altimeter are published on the webpage How to install UgCS SkyHub.

4 · PREPARATION

Prerequisites

Required desktop software:

- UgCS v4.3 or higher (referred below as UgCS)
- UgCS Custom Payload Monitor v3.17 (referred below as UgCS-CPM)
- Putty SSH Client
- WinSCP

Required desktop software for DJI drones:

 DJI Assistant 2 for A3 Autopilot, DJI Assistant 2 for Matrice (M210) or DJI Assistant 2 for Enterprize (M300, M600)

Required desktop software for PX4 based drones:

QGroundControl

Required desktop software for ArduPilot based drones:

Mission Planner

Required mobile software for DJI drones:

- For DJI A3 / M600 / M600 Pro: DJI GO
- For DJI M210 / M210 V2 / M300 RTK: DJI Pilot
- UgCS for DJI v2.36 or higher (referred below as UgCS for DJI)

Connect to UgCS SkyHub Using Wi-Fi

Important: It is strongly recommended to switch off a remote controller before any operations with the UgCS SkyHub Wi-Fi.

After powering on the UgCS SkyHub operates as Wi-Fi access point with following credentials:

- SSID: UgCS-SkyHub-***** (where ***** is the UgCS SkyHub serial number)
- Passphrase: 12341234

Note: Windows users might be suggested to enter PIN the first time. Please, switch to security key mode before entering the passphrase.

Figure 4.1 – Windows Wi-Fi connection dialog. PIN mode

(%,	UgCS-SkyHub-000023 Secured		
	Enter the network securi	ity key	
	•••••	6	,
	Next	Câncel	

Figure 4.2 – Windows Wi-Fi connection dialog. Security key mode.

One may connect to UgCS SkyHub via SSH protocol (e.g. using PuTTY or WinSCP).

- IP address: 10.1.0.1
- Port: 22
- Username: root
- Password: <empty>

Connect to UgCS SkyHub Using Ethernet

Parameters for wired connection are:

- IP address: 192.168.0.33
- Port: 22
- Username: root
- Password: <empty>

UgCS SkyHub runs DHCP service onboard, therefore, the PC's IP address will be assigned automatically after connection.

Access to Onboard File System

One may use any SCP client to access the UgCS SkyHub file system. For example, one may use WinSCP.

🌆 Login		– 🗆 X
New Site root@10.1.0.1	Session Eile protocol: SFTP Host name: 10.1.0.1 User name: Password root Edit	Port number: 22 : Advanced
Tools 🔻 Manage 🔻	Login ▼ Clos	e Help

Figure 4.3 – WinSCP settings

While pressing the Login button one may choose between login via SCP (to have access to the file system) or opening with PuTTY (for SSH access).

Table 4.1 – Onboard File System

	UGCS SKYHUB 2	UGCS SKYHUB 3
Home directory for root user	/home/root/	/root/
MicroSD root	/run/media/mmcblk1p1/	
Configuration file	/etc/skyhub/skyhub.conf	/etc/skyhub/skyhub.conf
Logs directory	/run/media/mmcblk1p1/sk yhub_logs/	/data/skyhub_logs/

Setup Interface to DJI Autopilot

To allow the UgCS SkyHub to connect to the DJI autopilot, one should activate and setup the Onboard SDK for its device, and setup the UgCS for DJI mobile application.

DJI User's Credentials Registration

One needs to create and use own credentials for the DJI flight controller activating. Please, follow the steps described below.

- 1. Create an account on https://developer.dji.com/ then enter to Apps tab in the developer area.
- 2. Choose the ONBOARD SDK option from the drop-down list and press the CREATE APP button.

Figure 4.4 – DJI Developer area

3. Enter corresponding information and press the CREATE button.

SDK	Onboard SDK
APP Name	Onboard
Category	Other
Description	

Figure 4.5 — Create app

- 4. Follow steps from received activation e-mail.
- 5. Return to the DJI Developer area and open app details. Remember **APP ID** and **App Key** values.

APP INFORMATIO	NC
SDK Type	Onboard SDK
APP Name	Onboard
APP ID	*****
Арр Кеу	*****
Category	-
Description	-
edit €	DELETE

Figure 4.6 – Getting App ID and Key from App Information

6. Write these values to corresponding configuration fields in skyhub.conf (APP_ID and APP_KEY accordingly in [DJI] or [DJI_M] section) as described in Setup the UgCS SkyHub Device. Do not forget to restart the UgCS SkyHub after changing parameters.

DJI Flight Controller Activation

The following steps are described for the DJI A3 flight controller but may be applied to another DJI product with a minor difference.

 Run the DJI Assistant 2 and check settings that at least DJI account information and Onboard SDK APP ID options are enabled. Otherwise, Onboard SDK access to the flight controller can't be activated.

JI Assistant 2 (Enterprise Series)			_		>
	Settings	Login	•	English	•
	Data Authorization				
	DJI and third party partners will access the following information to ensure that the software functions properly				
	DJI account information For device activation, firmware upgrade, data upload, Payload SDK and other services.				
	DJI device information For device activation and data upload services				
	Payload SDK Product ID and License information For Payload SDK binding and unbinding services				
	Onboard SDK APP ID For Onboard SDK activation service				
	Next				

Figure 4.7 – DJI Assistant 2 start window

2. Connect the DJI flight controller to the PC and press the Login button.

Figure 4.8 – DJI Assistant 2 start window

3. Enter User's DJI credentials created during DJI User's Credentials Registration and press Sign in button.

DJI Assistant 2 (Enterprise Series)				- 🗆 >
		Settings	Login	▼ English ▼
) else if (_isArra) options props = pro return typeof prop			
	×			
	your_gli_account			
	Verification Code Verification Code I have read and agree Terms of Use and Forcet your paceword?			
	Privacy Policy Poly Sign in			
	sign up			

Figure 4.9 – DJI Assistant 2 login window

4. Switch on the drone, wait for the device to appear, open the main window, then choose the SDK/Onboard SDK tab and check Enable API Control, Ground Station Status and Enable SDK Failsafe Actions checkboxes.

DJI Assistant 2						×
< сј ј АЗ	DJI Onboard SDK					-
💮 Dashboard	Enable API Control	Station Status	nable SDK Failsafe Action			
🔅 Basic Settings	Baud & Data Transmission Rates		Data Type			
🚀 Flight Settings	Baud Rate:	230400 👻	ACC:	Ground Frame Fusion Data	•	
🗙 Tools	Timestamp:	50 Hz 👻	GYRO:	Data Fusion	•	
🚯 DJI Device	Attitude Quaternions:	50 Hz 👻	ALTI:	Data Fusion	•	
X Simulator	Acceleration:	50 Hz 👻	HEIGHT:	Altitude to Home Point	•	
SDK	Velocity(Ground Frame):	50 Hz 👻				
👸 Firmware Update	Angular Velocity(Body Frame):	50 Hz 👻	SDK Failsare Action Settings			
🚀 Flight Data	Postion:	50 Hz 👻	SDK FAILSAFE ACTION:	Hover	•	
	GPS:	Do Not Send 👻				
	RTK:	Do Not Send 👻				
	Magnetometer:	Do Not Send 🛛 👻				
RC Status: FAILSAFE	Remote Controller Channel Data:	50 Hz 👻				
MC Output	Gimbal Data:	50 Hz 👻				
	Flight Status:	10 Hz 👻				
English 👻	Battery Level:	1 Hz 💌				

Figure 4.10 — Enable API control in DJI Assistant 2

5. When available: Choose the Basic Settings > Remote Controller tab, check the Enable Multiple Flight Mode checkbox, and configure the flight mode switch to be in P-mode for left and right positions while being in A-mode for the middle position.

An alternative way to activate the Multiple Flight Mode is using the DJI GO/Pilot app (see step 9 below).

< A3	Airframe Mounting Remote Controller ESC Settings	
ᢙ Dashboard	Choose Receiver Type: 182	
🔅 Basic Settings	Mada Da	
🚀 Flight Settings		
🗙 Tools	А	0
🚯 DJI Device	· · · · · · · · · · · · · · · · · · ·	
🛞 Simulator	E	0
SDK		2
🗑 Firmware Update		0
🚀 Flight Data	R	0

Figure 4.11 – Enable API control in DJI Assistant 2

- 6. Switch on the DJI Remote Controller, run DJI GO (DJI Pilot), choose the Me tab, press the Login button.
- 7. Enter User's DJI credentials created during DJI User's Credentials Registration and press the Sign in button.
- Choose the Equipment tab, wait for A3 / M600 / M600 Pro / M210 / M210 V2 / M300, then press Camera button.

	÷ +	Sign Up		رل	Ξ
Login Create a DJI Accourt	Login Sign in with DJI account.			A3	
T DJI Store new	Input a phone number or email address.				
•••	app@djidev.com	8		-	
Q DJI Forum	> Enter Password		-		-
	Forgot Password	0			
				Aircraft Connected	
	By tapping the Sign in button, you agree	to Terms		Camera	
	and Privacy Policy		\frown	Learn More	
Equipment Editor Skypixel	Login			Editor Skypixel	Me

Figure 4.12 – DJI GO screens

9. An alternative way to activate the Multiple Flight Mode. Go to the DJI GO/Pilot app > Camera View/Manual Flight > Menu > 🛠 > Enable Multiple Flight Mode.

Figure 4.13 – Enabling Multiple Flight Mode

10. **Note:** If DJI M210 is used, should be set to enable M210 Power Supply and OSDK Communication Ports in the DJI Pilot application for the first time.

X	K Extended IO Configuration	
●)))	Enable Power Supply Port	
 0 0	Enable Time sync And PWM Photo Mode	
HD		
	• iii) HD	Extended IO Configuration × Enable Power Supply Port • •:)) Enable OSDK Communication Port Enable Time sync And PWM • HD •

Figure 4.14 – DJI Pilot screen. Additional setups for DJI M210

- 11. Restart the drone by a power cycle. The UgCS SkyHub device should be properly connected to the flight controller.
- 12. Wait for the UgCS SkyHub firmware loads and starts. The DJI mobile application may request you about additional permissions for the Onboard SDK. Confirm all of them allowing the UgCS SkyHub to access the DJI autopilot.

Now the flight controller is ready to be connected via Onboard SDK. Please don't forget to move User's DJI App ID and Key to the skyhub.conf configuraiton file.

Important: The DJI flight controller may not activate from the first attempt. If there is no connection with flight controller after full system setup, try to logout and login several times with the drone power cycling.

DJI Obstacle Sensors Disabling

Depending on the used payload, downwards obstacle sensors may need to be disabled (actual for DJI M300 RTK and DJI M210). Should use DJI Pilot to disable them according to the screenshots below.

Figure 4.15 – M210 DJI Pilot screens

Figure 4.16 - M300 RTK DJI Pilot screens

Setup the UgCS for DJI Mobile Application

One should enable custom payload support in the UgCS for DJI mobile application. After starting the application go to Menu > Drone Specific Settings and enable the corresponding checkbox.

Figure 4.17 — Enable Custom Payload checkbox

Setup Interface to ArduPilot

UgCS SkyHub can be connected to the flight controller flashed with the ArduPilot 4.x.x firmware.

1. Make sure UgCS version 4.3 or higher is used (download links can be found in Prerequisites section) and VSM for ArduPilot vehicles is installed.

88 Setup	- 🗆 X
Select Components	850 ⁸ cs
Select the components you want to install; dear Next when you are ready to continue.	the components you do not want to install. Click
Geoserver UCS UGCS dient UgCS telemetry viewer UGCS video transmitter	Support module for ArduPilot vehicles.
Support ArduPilot vehicles	
Support D31 venices Support Parrot Anafi vehicles Support MicroPilot vehicles Support Mikrokopter vehicles Support PX4/Yuneec vehicles Support XBee connection Support microADSB receiver Support uAvionix receiver	
InstallBuilder	< Back Next > Cancel

Figure 4.18 – UgCS installation Support for ArduPilot vehicles

 Configure UgCS Ardupilot VSM. Open vsm-ardupilot.conf in text editor with administrator privileges. The file is located in the UgCS installation folder (default path C:\Program Files (x86)\UgCS\bin). Find, uncomment and adjust the following settings if needed.

₩ *C:\I	Program Files (x86)\UgCS\bin\vsm-ardupilot.conf - Notepad++ [Administrator]	_	\times
<u>E</u> ile <u>E</u> dit	: Search View Encoding Language Settings Tools Macro Run Plugins Window 2		x
6	3 16 16 16 16 19 10 10 10 10 10 10 10 10 10 10 10 10 10		
🔚 chang	e log 🗵 🔚 ni bit 🙁 🔚 vsm-ardupilot conf 🗵		
179	+ Maylink protocol version used by VSM.		^
181	I - Always use mavlinkl for outgoing messages.		
182	2 - Always use mavlink2 for outgoing messages.		
183	auto - Detect autopilot capabilities and use mavlink2 if autopilot reports MAV_PROTOCOL_CAPABILITY_MAVLINK2.		
184	<pre>befault : 1</pre>		
186	aviink.protocol_version = 2		
187	Vehicle detection timeout. On new connection VSM will wait this long for data from the vehicle.		
188	Range: 1100		
189	Default: 6		
190	vehicle.detection_timeout = 10		
192	Enable communication with onboard computer with custom payload functionality		
193	yes - communication is enabled. In this case onboard computer's system id and component id must be configured.		
194	Default: no		
195 • 1	rehicle.ardupilot.custom_payload.enable = yes		
196	MAVLINK system id of ophoard computer with custom payload functionality		
198	Range: 1 - 255		
199 🔵 🗤	rehicle.ardupilot.custom_payload.onboard.system_id = 2		
200			
201	MAVLINK component 1d of onboard computer with custom payload functionality. Eargo: 1 - 255		
202	range. 1 - 255		
204			
205	MAVLINK network of onboard computer with custom payload functionality.		
206	Range: 0 - 255		
207	<pre>/ Delault: 0 provide and united custom payload ophoard network = 0</pre>		
209			~
Normal t	ext file length : 9,141 lines : 214 Ln : 206 Col : 17 Pos : 8,780 Windows (CR LF) UTF-8		IN

Figure 4.19 – ArduPilot VSM configuration file

3. Within [AUTOPILOT] section set to true for the only MAVPILOT parameter and false for others:

```
[AUTOPILOTS]
DJI=false
DJI_M=false
MAVPILOT=true
```

- 4. Restart UgCS SkyHub
- Make sure that UgCS ArduPilot VSM parameter vehicle.ardupilot.custom_payload.onboard.component_id is equal to the COMPONENT_ID value in the [MAV] section of the UgCS SkyHub config. See ArduPilot/PX4 Configuration to find all available settings with default values and descriptions.
- 6. Open application Mission Planner, connect it to the vehicle autopilot and check serial port settings used for UgCS SkyHub communication. Check port configured baud rate. Speed should be the same as configured at UgCS SkyHub side in the [MAV] section of the UgCS SkyHub config (recommended 230400). If adjustment is needed don't forget write them and restart autopilot.
- Check communication between UgCS SkyHub and autopilot. Using Mission Planner open Setup -> Advanced -> MAVLink inspector.

Mission Planner 1.3.75 build	1.3.7883.26333 ArduCopter V4.0	.7 (0bb18a15)			-	o x
	FIG SIMULATION HELP			OM4 <u>11</u> ats COM4-1	1100 - JQUADROTOF -	DISCONNECT
Install Firmware	The following pages are for ad-	ranced configutation only. use with caution				
>> Mandatory Hardware	Warning Manager	Enable custom warnings based on a set of conditions				
>> Ontional Hardware	MAVLink Inspector	View decod in navlink data being sent and received				
>> Advanced	Proximity	View the data from a 360 lidar				
	Mavlink Signing	Enable mavlink signing to secure communication with the MAV				
Script HEPL	Mavlink Mirror	Mavlink mirror to an external location. For Monitoring or control				
	NMEA	Output the MAV location as a NMEA string				
	Follow Me	Use an external NMEA gps and send guided mode waypoints to the MAV based on that location				
	Param gen	Regenerage the param info used inside mp				
	Moving Base	Show an extra icon on the map of your current location.				
	Anon Log	Scramble lat/lng in bin or tlog				
	FFT	Plot a FFT from a log				

Figure 4.20 – Mission Planner MAVlink inspector

8. In case of correct connection and configuration MAVLink, inspector shows communication between UgCS SkyHub and autopilot.

💀 Mavlink Inspector	_	×
Graph It Show GCS Traffic		
Vehicle 10 H-Comp 1 F-Vehicle 2 H-Comp 5 H-HEARTBEAT (1.0 Hz, ‡0) 21Bps H-V2_EXTENSION (10.0 Hz, ‡240) 520Bps		

Figure 4.21 – Mission Planner MAVlink inspector data

Vehicle 2 and Comp 5 correspond to configured at UgCS SkyHub System (2) and Component (5) ID.

9. In case of correct Autopilot, UgCS and UgCS SkyHub configuration, *Payload data b64* is displayed at drone telemetry in UgCS.

Figure 4.22 – UgCS, drone telemetry

Setup Interface to PX4

UgCS SkyHub can be connected to the flight controller flashed with the PX4 1.10.x or higher firmware.

1. Make sure UgCS version 4.3 or higher is used (download links can be found in Prerequisites section) and VSM for PX4 vehicles is installed.

88 Setup	- 🗆 X
Select Components	8008 CS
Select the components you want to install; dear Next when you are ready to continue.	the components you do not want to install. Click
Geoserver UCS UgCS dient UgCS telemetry viewer UgCS video transmitter Support ArduPilot vehicles Support DJI vehicles Support DJI vehicles Support MicroPilot vehicles Support MicroPilot vehicles Support PX4/Yuneec vehicles Support XBee connection Support uAvionix receiver Support uAvionix receiver	Support module for PX4/Yuneec vehicles.
a sumonica	< Back Next > Cancel

Figure 4.23 – UgCS installation Support for PX4 based vehicles

 Configure UgCS PX4 VSM. Open px4-ardupilot.conf in text editor with administrator privileges. The file is located in the UgCS installation folder (default path C:\Program Files (x86)\UgCS\bin). Find, uncomment and adjust the following settings if needed.

Figure 4.24 – PX4 VSM configuration file

3. Within [AUTOPILOT] section set to true for the only MAVPILOT parameter and false for others:

```
[AUTOPILOTS]
DJI=false
DJI_M=false
MAVPILOT=true
```

- 4. Restart UgCS SkyHub
- Make sure that UgCS PX4 VSM parameter vehicle.px4.custom_payload.onboard.component_id is equal to the COMPONENT_ID value in the [MAV] section of the UgCS SkyHub config. See ArduPilot/PX4 Configuration to find all available settings with default values and descriptions.
- 6. If UgCS SkyHub is connected to telemetry port 2, open application QGroundControl, then go to Parameters -> MAVLink and set parameter MAV_1_CONFIG to TELEM2.

🕲 <mark>%</mark> 🍳	v 🛷 🗟 📢 🗴	\$ 100.0 📥 💷 🖡	100% 🔶 Disarr	med • Manual •
Vehicle Setup	Search:	Clear Show mo	dified only	
Summary		MAV_0_CONFIG	TELEM 1	Serial Configuration for MAVLink (instance 0)
Firmware	GPS	MAV_0_FORWARD	1	Enable MAVLink Message forwarding for instance 0
	GPS Failure Navigation	MAV_0_MODE	Normal	MAVLink Mode for instance 0
Airframe	Geofence	MAV_0_RADIO_CTL	1	Enable software throttling of mavlink on instance 0
(()) Sensors	Hover Thrust Estimator	MAV_0_RATE	1200 B/s	Maximum MAVLink sending rate for instance 0
V -1/	Iridium SBD		TELEM 2	Serial Configuration for MAVLink (instance 1)
o o Radio	Land Detector	MAV_2_CONFIG	Disabled	Serial Configuration for MAVLink (instance 2)
Flight Modes	MAVLink	MAV_COMP_ID	1	MAVLink component ID
	Miscellaneous	MAV_FWDEXTSP	1	Forward external setpoint messages
Power	Pilscenarieous	MAV_HASH_CHK_EN	1	Parameter hash check
Motors	Mission	MAV_HB_FORW_EN	1	Hearbeat message forwarding
-	Mixer Output	MAV_ODOM_LP	0	Activate ODOMETRY loopback
Safety	Mount	MAV_PROTO_VER	Default to 1, switch to 2	2 MAVLink protocol version
¢	Multicopter Attitude Control	MAV_RADIO_TOUT	5 s	Timeout in seconds for the RADIO_STATUS reports coming in
	Multicopter Position Control	MAV_SIK_RADIO_ID	0	MAVLink SiK Radio ID
Camera	Multicopter Rate Control	MAV_SYS_ID	1	MAVLink system ID
Parameters	PWM Outputs	MAV_TYPE	Quadrotor	MAVLink airframe type
*		MAV USEHILGPS	0	Use/Accept HIL GPS message even if not in HIL mode

Figure 4.25 – UgCS SkyHub PX4 TELEM2 port configuration

- 7. Restart autopilot.
- 8. After restart data forwarding for TELEM2 autopilot telemetry ports should be enabled, set to 1 parameter MAV_1_FORWARD.

((e)) Sensors	Commander	MAV 1 CONFIG	TELEM 2	Serial Configuration for MAVLink (instance 1)	
C Radio	DShot	MAV_1_FORWARD		Enable MAVLink Message forwarding for instance 1	

Figure 4.26 – UgCS SkyHub PX4 TELEM2 port data forwarding configuration

9. Change baudrate for the TELEM2 Serial Port (recommended 230400). Speed should be the same as configured at UgCS SkyHub side in the [MAV] section of the UgCS SkyHub config.

QGroundControl								
<mark>ک 🗞</mark> 🕲	🖉 🗟 📢 🗴	≶ 100.0 📥 폐 🖡	100% 🔶 Disar	med - Manual -				
Vehicle Setup	Search:	Clear Show mo	dified only					
Summary	Ceofence	SER_GPS1_BAUD	Auto	Baudrate for the GPS 1 Serial Port				
Firmware	Hover Thrust Estimator	SER_TEL1_BAUD	57600 8N1	Baudrate for the TELEM 1 Serial Port				
		SER_TEL2_BAUD	57600 8N1	Baudrate for the TELEM 2 Serial Port				

Figure 4.27 – UgCS SkyHub PX4 TELEM2 port baudrate configuration

Note: UgCS SkyHub subscribes to the following MAVLink messages with telemetry rate defined by the TELEMETRY_RATE parameter in the MAV section in UgCS SkyHub config file:

GPS2_RAW GPS_RAW_INT GLOBAL_POSITION_INT ATTITUDE SYSTEM_TIME HEARTBEAT DISTANCE_SENSOR

Setup the UgCS SkyHub Device

In order to configure the UgCS SkyHub software one should edit skyhub.conf file located in /etc/skyhub/ directory. This configuration file has a widely used INI like file format. The default configuration file created automatically if the configuration file doesn't exist.

The first step is to enable the only used autopilot and disable others. Go to [AUTOPILOTS] sections and set the corresponding field to true. For example, when using the solution with drones:

DJI M600/M600Pro/M210:

[AUTOPILOTS] DJI=true DJI_M=false MAVPILOT=false

The second important step is to configure used autopilot and payloads. Pay attention that related section will be available for configuration only after it enabling and UgCS SkyHub restart. For example, DJI autopilot related parameters are collected within the [DJI] section:

[DJI] APP_ID=1071019 APP_KEY=42873...30b25 BAUD_RATE=230400 RESPONSE_TIMEOUT_S=1 SENDING_PERIOD_MS=20 SERIAL_DEVICE=/dev/ttymxc3

ArduPilot / PX4 autopilot related parameters are collected within the [MAV] section:

[MAV] BAUD_RATE=230400 COMPONENT_ID=5 CONNECTION_TYPE=UART SENDING_PERIOD_MS=20 SERIAL_DEVICE=/dev/ttymxc3 SYSTEM_ID=2 V2_EXTENSION=false

Within [PAYLOADS] section set to true for the only used payloads and false for the unused ones. For example, when using the high frequency GPR with the radar altimeter:

[PAYLOADS] DROP_MESSENGER=false ECHOLOGGER_DUAL=false ECHOLOGGER_ECT=false FTTECHNOLOGIES_FT742_SM=false GEONICS_EM_38_MK2=false GEONICS_EM_61=false GNSS=false LIGHTWARE_SF30=false NANORADAR_MR=false NANORADAR_NRA=true PAYLOAD_EXAMPLE=false PERGAM_FALCON=false PERGAM_LMM=false RADARTEAM_COBRA=false RADSYS_ZGPR=false RADSYS_ZOND=true

Within [OUTPUTS] section set to true for the only used outputs and false for the unused ones. For example, when using the GPS output:

[OUTPUTS] OUTPUT_GPS=true PPS_SYNC=false

For a more detailed description of the configuration file, see Configuration Parameters.

5 · PAYLOADS SETUP

Choose the usage scenario below:

- Altimeter Setup
 - Nanoradar NRA24 Altimeter Setup
 - Lightware SF30/D Altimeter Setup
- Ground-Penetrating Radar Setup
 - Low Frequency GPR Setup
 - High Frequency GPR Setup
 - RadSys zGPR Setup
- Echosounder Setup
 - Echologger ECT400 Setup
 - Echologger ECT D052/D032 Setup
- Gas Detector Setup
 - Pergam Laser Falcon Setup
 - Pergam LMm Setup
- Metal Detector Setup
 - Geonics EM-61 Setup
- Conductivity Meter Setup
 - Geonics EM38-MK2 Setup
- Remote Water Sampling Setup
 - Drop Messenger Setup
- Anemometer Setup
 - FT Technologies FT742-SM Setup
- Obstacle Detector Setup
 - Nanoradar MR72 Setup
- Outputs Setup
 - GPS Output Setup
 - PPS Sync Setup

Altimeter Setup

There are common altimeter settings in the [ALTIMETER] section. Check whether minimum and maximum values correspond to your needs:
[ALTIMETER] MIN_ALTITUDE_M=0.5 MAX_ALTITUDE_M=20

These values are used to bound valid drone altitude values. When the drone flies out of the limits, the operator will be notified. Also, while flying in TF mode, descending below MIN_ALTITUDE_M or ascending above MAX_ALTITUDE_M make the drone hover and go to the safe altitude.

Another parameter to be set is the sensor's zero-level above ground when the drone stands at the surface:

[ALTIMETER] ZERO_LEVEL_M=0.4

The ZERO_LEVEL_M value will be subtracted from the distance reported by the rangefinder resulting in the true drone's altitude above ground level.

Nanoradar NRA24 Altimeter Setup

1. Set NANORADAR_NRA item to true in [PAYLOADS] section:

[PAYLOADS] NANORADAR_NRA=true

 Choose the appropriate SERIAL_DEVICE in the [NANORADAR_NRA] section depending on which connector it is connected to. Set it to /dev/ttymxc5 when connecting to the 5-pin Lemo connector or to /dev/ttymxc1 when connecting to the 4-pin Lemo connector for UgCS SkyHub 2 or set it to one of UARTs, e.g. to /dev/ttyAMA1, for UgCS SkyHub 3:

[NANORADAR_NRA]
SERIAL_DEVICE=/dev/ttymxc5
; or
SERIAL_DEVICE=/dev/ttymxc1
; or
SERIAL_DEVICE=/dev/ttyAMA1

Important: Nanoradar NRA24 radar altimeter doesn't detect any reflection from the ground when there is no motion due to technological limitations. Therefore, it starts to measure the altitude only after takeoff. Move the drone by hands before a flight to be sure the altimeter operates well.

See the Nanoradar NRA24 Altimeter Configuration section to find all available settings with default values and descriptions.

Lightware SF30/D Altimeter Setup

1. Set LIGHTWARE_SF30 item to true in [PAYLOADS] section:

[PAYLOADS] LIGHTWARE_SF30=true

2. Choose the appropriate UART_SERIAL_DEVICE in the [LIGHTWARE_SF30] section depending on which connector it is connected to:

[LIGHTWARE_SF30] UART_SERIAL_DEVICE=/dev/ttyAMA1

See Lightware SF30/D Altimeter Configuration to find all available settings with default values and descriptions.

ROS2-based Lightware SF30/D Altimeter Setup

Started from version 2.14 UgCS SkyHub supports new driver for SD30/D altimeter based on ROS2 framework design.

1. Set LIGHTWARE_SF30 item to false in [PAYLOADS] section to disable old version of driver:

[PAYLOADS] LIGHTWARE_SF30=false

2. Edit /etc/skyhub/skyhub.launch script to start up altimeter_monitor and altimeter driver for SF-30/D. See ROS-based Lightware SF30/D Altimeter Configuration to find script example.

ROS2-based Ainteins US-D1 Altimeter Setup

Started from version 2.14 UgCS SkyHub supports Ainteins US-D1 altimeter payload based on ROS2 framework design.

To enable this module edit the /etc/skyhub/skyhub.launch script to start up altimeter driver for Ainteins US-D1. See ROS-based Ainteins US-D1 Altimeter Configuration to find script example.

Ground-Penetrating Radar Setup

Low Frequency GPR Setup

1. Set RADARTEAM_COBRA item to true in [PAYLOADS] section:

[PAYLOADS] RADARTEAM_COBRA=true

2. Set MODEL and TIME_RANGE parameters in the [RADARTEAM_COBRA] section according to concrete GPR model used:

[RADARTEAM_COBRA] MODEL=SE-150 TIME_RANGE_NS=800

See Low Frequency GPR Configuration to find all available settings with default values and descriptions.

High Frequency GPR Setup

1. Every new device is to be calibrated before using. One should find the appropriate values of the pulse delay. Connect the GPR to the PC, run the Prism 2 software, and find the required pulse delay while using the desired mode, time range, sample count.

Medium	Concrete, brick, 4	
Samples	512	DUAL
Stacking	1	
Scan rate	80	
Sounding mode	Continuous	
Mode	Sounding	┤ │ ┃┃
Channels mode	Channel 1	
Antenna		¬
300 Mhz, shielded		
300 Mhz, shielded Range	12 ns, 0.80 m	
300 Mhz, shielded Range Gain	12 ns, 0.80 m	
300 Mhz, shielded Range Gain High-pass filter	12 ns, 0.80 m 0 / 0 dB OFF	Sampling rate is some redundant Not recommended to use a filter
300 Mhz, shielded Range Gain High-pass filter Real-time filter	12 ns, 0.80 m 0 / 0 dB OFF OFF	Sampling rate is some redundant Not recommended to use a filter
300 Mhz, shielded Range Gain High-pass filter Real-time filter Pulse delay	12 ns, 0.80 m 0 / 0 dB OFF OFF 40	Sampling rate is some redundant Not recommended to use a filter

Figure 5.1 – Prism 2 setup window

2. While using dual-channel GPR model one may choose either single-channel or dual-channel mode by setting the MODE parameter in the [RADSYS_ZOND] section:

[RADSYS_ZOND] MODE=CHANNEL_1 ; Single-channel ; or MODE=TWO_CHANNELS ; Dual-channel 3. Set the trace time range, sample count, pulse delay, and filter in the corresponding fields in the [RADSYS_ZOND] section:

[RADSYS_ZOND] FILTER_1=OFF FILTER_2=OFF MODE=TWO_CHANNELS PULSE_DELAY_1=297 PULSE_DELAY_2=301 SAMPLE_COUNT=256 TIME_RANGE_NS_1=300 TIME_RANGE_NS_2=300

Note: When using the Aero version of RadSys Zond radar, all fields are ignored apart PULSE_DELAY_1 and TIME_RANGE_NS_1.

4. While using dual-channel mode one may setup the antenna offsets in the corresponding fields:

```
[RADSYS_ZOND]
OFFSET_FORWARD_M_1=0.1 ; 10 cm alongside the heading line
OFFSET_FORWARD_M_2=0.1
OFFSET_RIGHT_M_1=0.25 ; 25 cm alongside the traverse line
OFFSET_RIGHT_M_2=-0.25 ; -25 cm alongside the traverse line (left offset)
```

See High Frequency GPR Configuration to find all available settings with default values and descriptions.

RadSys zGPR Setup

- 1. Every new device is to be calibrated before using. One should find the appropriate values of the pulse delay. Connect the GPR to the PC, run the Prism 2 software, and find the required pulse delay while using the desired mode, time range, sample count. See details in High Frequency GPR Setup.
- 2. Set RADSYS_ZGPR item to true in [PAYLOADS] section:

[PAYLOADS] RADSYS_ZGPR=true 3. Set the code of trace time range per sample, sample count, pulse delay, and stacking fields in the [RADSYS_ZGPR] section:

[RADSYS_ZOND] PULSE_DELAY=174 SAMPLE_COUNT=512 STACKING=128 TIME_RANGE_PER_SAMPLE=7

See RadSys zGPR Configuration to find all available settings with default values and descriptions.

Echosounder Setup

There are common echosounder settings in the [ECHOSOUNDER] section. Check whether minimum and maximum values correspond to your needs:

[ECHOSOUNDER] MIN_DEPTH_M=0.5 MAX_DEPTH_M=20

These values are used to bound valid echosounder depth values. When the depth value is out of the limits, the operator will be notified.

Another parameter to be set is the length of the echosounder cable:

[ECHOSOUNDER] CABLE_LENGTH_M=0

This parameter is set to zero by default. If set to the value greater than zero, it is used to determine whether the echosounder is immersed in water. When the drone altitude becomes lower than the cable length, it means the echosounder is immersed in water.

Also, the cable length parameter is used to find the *True Depth* value. *True Depth* is a calculated value of depth from the surface resulting from the echosounder's value and the current altitude using the specified cable length parameter.

The *True Depth* value is recorded as a separate column in the position log file and echosounder NMEA log (see About Log Files). Also, this data is sent to the PC application.

The first samples of the trace in SEG-Y log (see About Log Files) are set to zero if the echosounder is immersed in water. Zeros number (N) is defined from the difference between the *True Depth* value (TDepth, m) and the depth measured with the echosounder (Depth, m) taking into account the speed of sound (1500 m/s) and set sampling rate (Rate, Hz) by the formula:

 $N = 2 \times (TDepth - Depth) \times Rate / 1500$

Echologger ECT400 Setup

1. Set ECHOLOGGER_ECT item to true in [PAYLOADS] section:

[PAYLOADS] ECHOLOGGER_ECT=true

2. Set the MAX_SENSOR_ANGLE_DEG parameter in the [ECHOLOGGER_ECT] section for data filtering by echosounder tilt while recording. Set to 90 degrees for disabling.

3. Set the MIN_SENSOR_DEPTH_M parameter in the [ECHOLOGGER_ECT] section for data filtering by echosounder depth value while recording. Set to zero for disabling:

[ECHOLOGGER_ECT] MAX_SENSOR_ANGLE_DEG=10 MIN_SENSOR_DEPTH_M=0.1

4. Set the RANGE_M, the DEADZONE_MM parameters in the [ECHOLOGGER_ECT] section according to the water body to be explored:

[ECHOLOGGER_ECT] DEADZONE_MM=300 RANGE_M=10

5. One may choose the output data format for Echologger ECT400. The NMEA value is useful when only NMEA log file should be recorded. The ECHOSOUNDER mode is used to record both NMEA and SEG-Y logs:

[ECHOLOGGER_ECT] MODE=NMEA ; or MODE=ECHOSOUNDER

Note the data rate in the ECHOSOUNDER mode is significantly lower than in the NMEA one.

Table 5.1 — Maximum measure interval against range in NMEA and Echosounder mode for Echologger ECT400

RANGE	NMEA MODE	ECHOSOUNDER MODE
2 m	0.1 sec	0.25 sec
10 m	0.1 sec	0.5 sec
20 m		1 sec
40 m	0.2 sec	
80 m	0.25 sec	2 sec
100 m	0.33 sec	0.25 sec

See Echologger ECT400 Configuration to find all available settings with default values and descriptions.

Echologger ECT D052/D032 Setup

1. Set ECHOLOGGER_DUAL item to true in [PAYLOADS] section:

[PAYLOADS] ECHOLOGGER_DUAL=true

- 2. Set the MAX_SENSOR_ANGLE_DEG parameter in the [ECHOLOGGER_DUAL] section for data filtering by echosounder tilt while recording. Set to 90 degrees for disabling.
- 3. Set the MIN_SENSOR_DEPTH_M parameter in the [ECHOLOGGER_DUAL] section for data filtering by echosounder depth value while recording. Set to zero for disabling:

[ECHOLOGGER_DUAL] MAX_SENSOR_ANGLE_DEG=10 MIN_SENSOR_DEPTH_M=0.1

4. Set the RANGE_HIGH_M, the RANGE_LOW_M, the DEADZONE_HIGH_MM, and the DEADZONE_LOW_MM parameters in the [ECHOLOGGER_DUAL] section according to the water body to be explored:

[ECHOLOGGER_DUAL] DEADZONE_HIGH_MM=500 DEADZONE_LOW_MM=1000 RANGE_HIGH_M=10 RANGE_LOW_M=10 5. Set the FREQUENCY_HIGH_HZ and the FREQUENCY_LOW_HZ parameters in the [ECHOLOGGER_DUAL] section.

FREQUENCY_HIGH_HZ/FREQUENCY_LOW_HZ should be set according to the model of echo sounder as below:

D032:

[ECHOLOGGER_DUAL] FREQUENCY_HIGH_HZ=200000 FREQUENCY_LOW_HZ=30000

D052:

[ECHOLOGGER_DUAL] FREQUENCY_HIGH_HZ=200000 FREQUENCY_LOW_HZ=50000

Please note that these parameters are not used to change frequency of echosounder because frequencies are fixed for a particular model. They are utilized for correct echosounder data handling.

6. One may choose the output data format for Echologger ECT D052/D032. The NMEA value is useful when only NMEA log file should be recorded. The ECHOSOUNDER mode is used to record both NMEA and SEG-Y logs:

[ECHOLOGGER_DUAL] MODE=NMEA ; or MODE=ECHOSOUNDER

Note the data rate in the ECHOSOUNDER mode is significantly lower than in the NMEA one. Strongly recommended to set the INTERVAL_S value in the ECHOLOGGER_DUAL section according to the table:

Table 5.2 – Maximum measure interval against range in NMEA and Echosounder mode for Echologger ECT D052/D032

RANGE	NMEA MODE	ECHOSOUNDER MODE
1 m	0.1 sec	0.25 sec

RANGE	NMEA MODE	ECHOSOUNDER MODE
2 m	0.1 sec	0.33 sec
5 m	0.1 sec	0.5 sec
10 m	0.1 sec	1 sec
20 m	0.125 sec	2 sec
50 m	0.2 sec	4 sec
100 m	0.33 sec	4 sec
150 m	0.5 sec	4 sec
200 m	1 sec	4 sec

7. Set the SAMPLING_RATE_HZ parameter in the [ECH0L0GGER_DUAL] section according to the table below. The SAMPLING_RATE_HZ is relevant only for the ECH0SOUNDER mode.

Table 5.3 – Sampling rate depending on the range in Echosounder mode for Echologger ECT D052/D032

RANGE	SAMPLING RATE
1 ~ 50 m	100000 Hz
60 ~ 100 m	50000 Hz
120 ~ 200 m	25000 Hz

Important: if the improper value of sampling rate sets for a certain range, Echologger ECT D052/D032 can reset continuously until the proper value is set.

See Echologger ECT D052/D032 Configuration to find all available settings with default values and descriptions.

Gas Detector Setup

There are common gas detector settings in the [GAS_DETECTOR] section. Check whether minimum and maximum values correspond to your needs:

```
[GAS_DETECTOR]
MIN_CONCENTRATION_PPM=0
MAX_CONCENTRATION_PPM=1000
```

These values are used to bound valid gas detector values. When the gas concentration is out of the limits, the operator will be notified.

Another parameter to be set is the sensor's background value:

```
[GAS_DETECTOR]
ZERO_LEVEL_PPM=0
```

The ZERO_LEVEL_PPM value will be subtracted from the gas concentration reported by the gas detector resulting in the true gas concentration.

Pergam Laser Falcon Setup

1. Set PERGAM_FALCON item to true in [PAYLOADS] section:

[PAYLOADS] PERGAM_FALCON=true

2. Choose the appropriate SERIAL_DEVICE in the [PERGAM_FALCON] section:

[PERGAM_FALCON]
SERIAL_DEVICE=/dev/ttyUSB0

See Pergam Laser Falcon Configuration to find all available settings with default values and descriptions.

Pergam LMm Setup

1. Set PERGAM_LMM item to true in [PAYLOADS] section:

[PAYLOADS] PERGAM_LMM=true Choose the appropriate SERIAL_DEVICE in the [PERGAM_LMM] section depending on which connector it is connected to. Set it to /dev/ttymxc5 when connecting to the 5-pin Lemo connector or to /dev/ttymxc1 when connecting to the 4-pin Lemo connector for UgCS SkyHub 2 or set it to one of UARTs, e.g. to /dev/ttyAMA1, for UgCS SkyHub 3:

```
[PERGAM_LMM]
SERIAL_DEVICE=/dev/ttymxc5
; or
SERIAL_DEVICE=/dev/ttymxc1
; or
SERIAL_DEVICE=/dev/ttyAMA1
```

See Pergam LMm Configuration to find all available settings with default values and descriptions.

Metal Detector Setup

There are common metal detector settings in the [METAL_DETECTOR] section. Check whether minimum and maximum values correspond to your needs:

[METAL_DETECTOR] MIN_OUTPUT_VALUE_MV=0 MAX_OUTPUT_VALUE_MV=1000

These values are used to bound valid metal detector values. When the output value is out of the limits, the operator will be notified.

Geonics EM-61 Setup

1. Set GEONICS_EM_61 item to true in [PAYLOADS] section:

```
[PAYLOADS]
GEONICS_EM_61=true
```

2. Choose the appropriate CONNECTION_TYPE in the [GEONICS_EM_61] section:

```
[GEONICS_EM_61]
CONNECTION_TYPE=BLUETOOTH ; connection through bluetooth (preferable)
; or
CONNECTION_TYPE=RS232 ; connection through RS323
```

 While using RS323 connection choose the appropriate SERIAL_DEVICE in the [GEONICS_EM_61] section. Set it to /dev/ttymxc1 when the onboard RS232 connection is used or to /dev/ttyUSB0 when the USB-RS232 connection is used for UgCS SkyHub 2 or set it to one of UARTs, e.g. to /dev/ttyAMA3, for UgCS SkyHub 3:

```
[GEONICS_EM_61]
SERIAL_DEVICE=/dev/ttymxc1
; or
SERIAL_DEVICE=/dev/ttyUSB0
; or
SERIAL_DEVICE=/dev/ttyAMA3
```

See Geonics EM-61 Configuration to find all available settings with default values and descriptions.

Conductivity Meter Setup

There are common conductivity meter settings in the [CONDUCTIVITY_METER] section. Check whether minimum and maximum values correspond to your needs:

[CONDUCTIVITY_METER] MIN_OUTPUT_VALUE_MS_M=0 MAX_OUTPUT_VALUE_MS_M=500

These values are used to bound valid conductivity values. When the conductivity is out of the limits, the operator will be notified.

Geonics EM38-MK2 Setup

1. Set GEONICS_EM_38_MK2 item to true in [PAYLOADS] section:

[PAYLOADS]
GEONICS_EM_38_MK2=true

2. Choose the appropriate CONNECTION_TYPE in the [GEONICS_EM_38_MK2] section:

```
[GEONICS_EM_38_MK2]
CONNECTION_TYPE=BLUETOOTH ; connection through bluetooth
; or
CONNECTION_TYPE=RS232 ; connection through RS323
```

3. Choose the appropriate CHANNEL_NUMBER in the [GEONICS_EM_38_MK2] section to display the desired value on the Conductivity Meter widget in UgCS-CPM. For example, to display the conductivity for 1.0 m set channel to 3:

[GEONICS_EM_38_MK2] CHANNEL_NUMBER=3

See Geonics EM38-MK2 Configuration to find all available settings with default values and descriptions.

Important: to connect through RS232 should use the USB-UART adapter.

Important: should calibrate the conductivity meter before using it according to the manufacture documentation.

Remote Water Sampling Setup

Drop Messenger Setup

1. Set DROP_MESSENGER item to true in [PAYLOADS] section:

[PAYLOADS] DROP_MESSENGER=true

 DROP_MESSENGER plugin has only one purpose is to drop messenger to close Ruttner water sampler. UgCS SkyHub drops the messenger using servo controlled through PWM. By default, it's used the following PWM settings:

[DROP_MESSENGER] SERVO_LOCK_PULSE_MS=1.5 SERVO_PERIOD_MS=10 SERVO_UNLOCK_PULSE_MS=0.5

See Drop Messenger Configuration to find details and descriptions.

Anemometer Setup

There are common anemometer settings in the [ANEMOMETER] section. Check whether minimum and maximum values correspond to your needs:

[ANEMOMETER] MIN_WIND_SPEED_MPS=0 MAX_WIND_SPEED_MPS=10 These values are used to bound valid wind speed values. When the wind speed is out of the limits, the operator will be notified.

FT Technologies FT742-SM Setup

1. Set FTTECHNOLOGIES_FT742_SM item to true in [PAYLOADS] section:

[PAYLOADS] FTTECHNOLOGIES_FT742_SM=true

See FT Technologies FT742-SM Configuration to find all available settings with default values and descriptions.

Obstacle Detector Setup

Nanoradar MR72 Setup

1. Set NANORADAR_MR item to true in [PAYLOADS] section:

[PAYLOADS] NANORADAR_MR=true

- 2. Choose the appropriate IGNORE_SIDE_SECTORS in the [NANORADAR_MR] section to ignore or to take into account side sections during the distance to an obstacle definition.
- 3. To monitor the distance to obstacles in UgCS-CPM, add the Payload Example widget by clicking the plus button and set Payload Message ID equals 195 by clicking the settings button.

See the Nanoradar MR72 Configuration section to find all available settings with default values and descriptions.

GPS Receiver Setup

GNSS plugin supports GPS receivers with NMEA output data and connection through USB or UART. GNSS plugin supports parsing for ZDA and GGA sentences of NMEA format.

Emlid Reach M2 Setup

1. Connection to UgCS SkyHub has two options. Using micro-USB cable or UART S1 port on Emlid Reach M2. Due to high peak power consumption, should get additional power supply for the Emlid Reach M2. 2. Should decide how to power Emlid Reach M2. It could be done over USB or one of it S1, S2, C1, or C2 ports. Emlid Reach M2 requires up to 3 A current @ 5.2 V to power up properly, 600 mA for regular power consumption, and 3 A for peaks.

Figure 5.2 – Emlid Reach M2 Port Pinouts

3. If USB connection is used, USB cable +5 wire should be isolated from UgCS SkyHub. Make sure that there is a stable power source for Emlid Reach M2, only the red LED lights up when the receiver lacks power.

Important: Do not plug two power supplies at the same time as it may damage the device.

Figure 5.3 – Wrong power supply for Emlid Reach M2

- 4. When Emlid Reach M2 is powered on, connect to its Wi-Fi. Adjust the receiver using the special app from the manufacture or the internet browser. Should set Output 1/Serial to ON on the Position Output Settings Page.
- 5. Select output interface according to connection type to UgCS SkyHub, USB or UART.
- 6. Select the baud rate and NMEA format. Save settings.

7. Then should change skyhub configuration. Set GNSS item to true in [PAYLOADS] section:

[PAYLOADS] GNSS=true

Important: GPS Receiver loads settings from separate config file. The file location: /etc/skyhub/gnss.conf. File format: INI (https://en.wikipedia.org/wiki/INI_file)

 Check parameters in gnss.config file. Set SERIAL_DEVICE to /dev/ttymxc1 when the UART connection is used with UgCS SkyHub 2 or to /dev/ttyUSBX (X is the USB port number) when the USB connection is used with UgCS SkyHub of both generations:

[GNSS] BAUD_RATE=115200 ; equals selected on step 6 PAYLOAD_ID=193 SERIAL_DEVICE=/dev/ttymxc1 ; UART connection or SERIAL_DEVICE=/dev/ttyUSBX ; USB connection

See GPS Receiver Configuration to find all available settings with default values and descriptions.

 To check correct Emlid Reach M2 connection to UgCS SkyHub, use the Payload Example Widget in UgCS-CPM and set Payload Message ID to GNSS/PAYLOAD_ID value from GNSS configuration file. There will be a satellite count on the Payload Example Widget if all settings are right.

Outputs Setup

GPS Output Setup

GPS Output sends to defined address messages contained ZDA and GGA sentences in NMEA format. Coordinates, date, time, and other information for NMEA sentences are received from an drone (UAV).

1. Set OUTPUT_GPS item to true in [OUTPUTS] section:

[OUTPUTS] OUTPUT_GPS=true

- 2. Choose the appropriate ADDRESS in the [OUTPUT_GPS] section. ADDRESS has to match with connected serial device name which the GPS output sends messages to.
- 3. Choose the appropriate FREQUENCY_HZ and BAUD_RATE in the [OUTPUT_GPS] section.

See the GPS Output Configuration section to find all available settings with default values and descriptions.

PPS Sync Setup

PPS Sync provides transmitting PPS signal from the source (for ex, from an autopilot) to the consumer (any payload). To support PPS Sync, should implement a support for special pins in the cable connecting a payload with the UgCS SkyHub device.

Set PPS_SYNC item to true in [OUTPUTS] section:

```
[OUTPUTS]
PPS_SYNC=true
```

By default, UgCS SkyHub supports the connector 2 as the PPS signal source and the connector 5 as output for the PPS signal consumer.

Note: Please, contact our support team if PPS Sync configuration changes are required.

DBUS Bridge Setup

DBUS Bridge plugin is a key component for interaction with ROS2 framework. All ROS-based payload drivers use this module to interact with core UgCS SkyHub services (ground software connections, log files, flight controller data acquisition).

Set DBUS_BRIDGE item to true in [OUTPUTS] section:

[OUTPUTS] DBUS_BRIDGE=true

Restart UgCS SkyHub after this. Then reboot is complete with enabled BDUS_BRIDGE plugin, new section DBUS_BRIDGE will appear. You may use default values of change them for your needs.

See the DBUS Bridge Configuration section to find all available settings with default values and descriptions.

Note: Please, contact our support team if ROS2 integration configuration changes are required.

6 · GETTING STARTED

It is strongly recommended to verify any usage scenario using the simulator before starting the real flight. There is a dedicated simulator mode in the UgCS for DJI mobile application. Go to Menu > Simulator to enable or disable it.

Simulator	
Simulator Click to enable simulator mode	
Takeoff latitude 46.7754126	
Takeoff longitude 8.3452827	

Figure 6.1 – Enable Simulator mode

True Terrain Following

Simulator Mode

- Connect to UgCS SkyHub (see Connect to UgCS SkyHub Using Wi-Fi or Connect to UgCS SkyHub Using Ethernet) and set the ALTITUDE_SOURCE field in the [TF] section to AUTOPILOT (see True Terrain Following Configuration for additional options). Disconnect from the UgCS SkyHub.
- 2. Start the PC and connect it to the Wi-Fi network. Start the UgCS and plan a mission for the drone.
- 3. Turn on the drone, the payload, and UgCS SkyHub device.
- 4. Connect the mobile device to the same Wi-Fi network as the PC. Turn on the DJI Remote Controller. Be sure that the flight mode switch on the DJI Remote Controller is in the P-mode. Run the UgCS for DJI mobile application. Wait for the application shows the main window and connects to the UgCS. UCS connection indicator in the UgCS for DJI should become green.
- 5. Click Menu, choose Simulator, and enable the Simulator checkbox.

6. Make sure that the drone with a correct profile appears in the UgCS on the PC and all drone indicators (battery, uplink, downlink, satellites) are green. Select the drone and the mission.

Figure 6.2 – Good (left) and bad (right) vehicle state in UgCS

7. Start the UgCS-CPM application and connect to UgCS with default credentials. Check the UgCS, Drone, and UgCS SkyHub indicators are green. Add the Terrain Following widget and other widgets related to connected payloads by clicking the plus button.

Figure 6.3 – UgCS and UgCS-CPM application open side-by-side

- 8. Upload the route to the drone. After that, click the Read button in the Terrain Following widget (UgCS-CPM), then click Configure and make sure the Terrain Following ENABLED message appears in the UgCS-CPM log window at the bottom side. If not, toggle the flight mode switch to A-mode (S-mode for DJI M300 RTK) and back it to P-mode, then try again to press the Configure button.
- 9. Arm the drone using the DJI Remote Controller then take off at the valid altitude (see Altimeter Setup for details).
- 10. Click the Activate button in the Terrain Following widget to activate the Terrain Following Flight mode. Check the drone simulator has started a mission.

- 11. Make sure the data from connected payloads are displayed in UgCS-CPM. Try to move the UAV and check the sensors' response.
- 12. Land the drone simulator after the mission has been completed and try to download log files (see Log Files Management below). Check the log files for validity.
- 13. Erase all log files.
- 14. Restore the UgCS SkyHub settings in the [TF] section before the real flight. Set the ALTITUDE_SOURCE field back to ALTIMETER. For more details about configuration settings, see True Terrain Following Configuration.

Flight

Configuration steps to be done before the real flight are similar to ones described above for simulator mode. Use the checklist below:

- 1. Make sure the ALTITUDE_SOURCE field in the [TF] section is set to ALTIMETER.
- 2. Check the altitude limits MIN_ALTITUDE_M and MAX_ALTITUDE_M in the [ALTIMETER] section.
- 3. Set the ZERO_LEVEL_M value in the [ALTIMETER] section according to the real position of the altimeter.
- 4. Make sure the only used payloads are true in the [PAYLOADS] section. Every payload should be properly configured (see Payloads Setup).
- 5. Erase old log files if they are not more needed (see Log Files Management below for details).
- 6. Connect both the PC and the mobile device to the same Wi-Fi network.
- 7. Switch on the drone and the DJI Remote Controller. Make sure the flight mode switch is in P-mode. Run UgCS, UgCS for DJI, and make sure the drone has a good status in UgCS.
- 8. Run UgCS-CPM, wait for all indicators become green, and press the Start button.
- Check the Altimeter widget for it displays the altimeter data. Note that there is no data from the radar altimeter until the drone is moving. Gently shake the drone by hand until the altitude starts to change. Note the altitude limits may be changed in Settings > Altimeter window.
- 10. Upload the route to the drone using UgCS.
- 11. Go to the Terrain Following widget, press Read to read current TTF settings.
- 12. Set the Target Altitude and Safe Altitude to desired values.

Attention: It is strongly recommended not to set Target Altitude more than **10 meters** for the laser altimeter **above water**

13. Press the Configure button. Wait for the Terrain Following ENABLED message.

- 14. If there is no message mentioned above, change the flight mode switch to A-mode (S-mode for DJI M300 RTK) and back it to P-mode, then try again to press the Configure button.
- 15. Take off using the DJI Remote Controller or from the UgCS and rise up to the appropriate altitude (see limits from step 2).
- 16. Press the Activate button in the Terrain Following widget to start the flight in terrain-following mode. The alternative way to activate it is to move the flight mode switch to A-Mode then to F-mode. The alternative way doesn't support with M210/M300 series DJI of drones.
- 17. You may interrupt the flight by moving the flight mode switch to A-Mode (S-mode for for DJI M300 RTK) then to P-mode or by pressing the Pause button in the Terrain Following widget (UgCS-CPM).

The flight can be resumed by moving the flight mode switch to A-mode then to F-mode or by pressing the Resume button in the Terrain Following widget (UgCS-CPM). Resuming using the DJI Remote Controller don't support with M210/M300 series DJI of drones.

During pause you may manually control the drone, for example fly around an obstacle. In this case the drone returns to the nearest point on the route by the shortest way after resuming.

Attention: the flight mode on the DJI Remote Controller must be obligatory switched back to **P-mode** before manually control. Otherwise, the drone returns to an unexpected resuming point.

- 18. If the drone descends below the minimum allowed altitude or ascends above the maximum allowed altitude (see step 2), it stops then climbs to increase its altitude to value configured at step 12. You may manually correct drone position and resume the flight according to recommendations at step 17.
- 19. After the mission has been completed the drone stops at the last waypoint then climbs to increase its altitude to value configured at step 12.
- 20. Move the flight mode switch to P-Mode to take control, then return the drone to the desired landing position, and land. If the flight has been ended over the desired landing point, press the Land button in UgCS.
- 21. Download log files (see Log Files Management).

TTF with new altimeter drivers

To use new (ROS2 based) altimeter drivers for TTF mode additional modules must be configured. There are two modules:

- 1. Altimeter monitor is responsible for sending altimeter telemetery to the Ground Software.
- 2. TTF feeder is responsible for accurate altitude data supply for True Terrain Following.

The configuration of TTF using the new drivers includes these steps:

- 1. Configure new driver as described before. For example, see ROS2-based Ainteins US-D1 Altimeter Setup.
- 2. Configure TTF for Simulation or real Flight mode as was shown above.
- 3. Add Altimeter monitor node description into Skyhub.launch file.
- 4. Add TTF feeder node description into Skyhub.launch file.
- 5. Restart the skyhub.
- 6. Configure [_MONITOR_SKYHUB%255FALTIMETER%255FMONITOR_0] section parameters (see Configure Altimeter Monitor).
- 7. Configure [_MONITOR_SKYHUB%255FTTF%255FFEED_0] section parameters (see Configure TTF Feeder).

Grasshopper Mode

Simulator Mode

- Connect to UgCS SkyHub (see Connect to UgCS SkyHub Using Wi-Fi or Connect to UgCS SkyHub Using Ethernet) and set the ALTITUDE_SOURCE field in the [GH] section to AUTOPILOT (see Grasshopper Configuration for additional options). Disconnect from the UgCS SkyHub.
- 2. Start the PC and connect it to the Wi-Fi network. Start the UgCS and plan a mission for the drone. The descent points must be set as wait action, the wait duration defines waiting time in the descent point.
- 3. Turn on the drone, the payload, and UgCS SkyHub device.
- 4. Connect the mobile device to the same Wi-Fi network as the PC. Turn on the DJI Remote Controller. Be sure that the flight mode switch on the DJI Remote Controller is in the P-mode. Run the UgCS for DJI mobile application. Wait for the application shows the main window and connects to the UgCS. UCS connection indicator in the UgCS for DJI should become green.
- 5. Click Menu, choose Simulator and enable the Simulator checkbox.
- 6. Make sure that the drone with a correct profile appears in the UgCS on the PC and all drone indicators (battery, uplink, downlink, satellites) are green. Select the drone and the mission.

- 7. Start the UgCS-CPM application and connect to UgCS with default credentials. Check the UgCS, Drone, and UgCS SkyHub indicators are green. Add the Grasshopper widget and other widgets related to connected payloads by clicking the plus button.
- 8. Upload the route to the drone. After that, click the Read button in the Grasshopper widget (UgCS-CPM), then click Configure and make sure the Grasshopper ENABLED message appears in the UgCS-CPM log window at the bottom side. If not, toggle the flight mode switch to A-mode (S-mode for DJI M300 RTK) and back it to P-mode, then try again to press the Configure button.
- 9. Arm the drone using the DJI Remote Controller then take off at the valid altitude (see Altimeter Setup for details).
- 10. Click the Activate button in the Grasshopper widget (UgCS-CPM) to activate the Grasshopper Flight mode. Check the drone simulator has started a mission.
- 11. Make sure the data from connected payloads are displayed in UgCS-CPM and payloads send data.
- 12. Land the drone simulator after the mission has been completed and try to download log files (see Log Files Management below). Check the log files for validity.
- 13. Erase all log files.
- 14. Restore the UgCS SkyHub settings in the [GH] section before the real flight. Set the ALTITUDE_SOURCE field back to ALTIMETER. For more details about configuration settings, see Grasshopper Configuration.

Flight

Configuration steps to be done before the real flight are similar to ones described above for simulator mode. Use the checklist below:

- 1. Make sure the ALTITUDE_SOURCE field in the [GH] section is set to ALTIMETER.
- 2. Check the altitude limits MIN_ALTITUDE_M and MAX_ALTITUDE_M in the [ALTIMETER] section.
- 3. Set the ZERO_LEVEL_M value in the [ALTIMETER] section according to the real position of the altimeter.
- 4. Make sure the only used payloads are true in the [PAYLOADS] section. Every payload should be properly configured (see Payloads Setup).
- 5. Erase old log files if they are not more needed (see Log Files Management below for details).
- 6. Connect both the PC and the mobile device to the same Wi-Fi network.
- 7. Switch on the drone and the DJI Remote Controller. Make sure the flight mode switch is in P-mode. Run UgCS, UgCS for DJI, and make sure the drone has a good status in UgCS.
- 8. Run UgCS-CPM, wait for all indicators become green, and press the Start button.

- Check the Altimeter widget for it displays the altimeter data. Note that there is no data from the radar altimeter until the drone is moving. Gently shake the drone by hand until the altitude starts to change. Note the altitude limits may be changed in Settings > Altimeter window.
- 10. Upload the route to the drone using UgCS.
- 11. Go to the Grasshopper widget, press Read to read current GH settings.
- 12. Set Target Altitude in order to follow terrain, set Descent To to desired values.

Attention: It is strongly recommended not to set Target Altitude more than **10 meters** for the laser altimeter **above water**

- 13. Press the Configure button. Wait for the Grasshopper ENABLED message.
- 14. If there is no message mentioned above, change the flight mode switch to A-mode (S-mode for DJI M300 RTK) and back it to P-Mode, then try again to press the Configure button.
- 15. Take off using the DJI Remote Controller or from the UgCS and rise up to the appropriate altitude (see limits from step 2).
- 16. Press the Activate button in the Grasshopper widget to start the flight in grasshopper mode. The alternative way to activate it is to move the flight mode switch to A-Mode then to F-mode. The alternative way doesn't support with M210/M300 series DJI of drones.
- 17. You may interrupt the flight by moving the flight mode switch to A-Mode (S-mode for DJI M300 RTK) then to P-mode or by pressing the Pause button in the Grasshopper widget (UgCS-CPM).

The flight can be resumed by moving the flight mode switch to A-mode then to F-mode or by pressing the Resume button in the Grasshopper widget (UgCS-CPM). Resuming using the DJI Remote Controller don't support with M210/M300 series DJI of drones.

During pause you may manually control the drone, for example fly around an obstacle. In this case the drone returns to the nearest point on the route by the shortest way after resuming.

Attention: the flight mode on the DJI Remote Controller must be obligatory switched back to **P-mode** before manually control. Otherwise, the drone returns to an unexpected resuming point.

18. If the drone descends below the minimum allowed altitude or ascends above the maximum allowed altitude (see step 2), it stops then climbs to increase its altitude to value defined the FAIL_SAFE_ALTITUDE_M parameter in the [GH] section in config and then the route pauses. You may manually correct drone position and resume the flight according to recommendations in the step 17.

- 19. After the mission has been completed the drone stops at the last waypoint then climbs to increase its altitude to value defined the FAIL_SAFE_ALTITUDE_M parameter in the [GH] section in config.
- 20. Return the drone to the desired landing position, and land. If the flight has been ended over the desired landing point, press the Land button in UgCS.
- 21. Download log files (see Log Files Management).

Obstacle Avoidance Mode

Obstacle Avoidance mode enables to prevent collision of the drone (UAV) with obstacles during the flight. The mode is available for neither manual/auto flights and TTF/GH flight modes. Obstacle Avoidance mode is enabled for all supported DJI drones.

Description

The mode can be activated by pressing the Activate button on the Obstacle Avoidance widget in UgCS-CPM. The activation status is kept in config (see the ACTIVATED parameter in the [0A] section in config Obstacle Avoidance Configuration) so if the previous UgCS SkyHub session was finished with activated mode, UgCS SkyHub restores activation status in the new session. In this case UgCS-CPM contains the Deactivate button.

Obstacle Avoidance mode, when it's activated, has two possible states:

- DISARMED: not all conditions are executed, the distance to obstacles isn't controlled.
- ARMED: the distance to obstacles is controlled.

Conditions of auto switching to ARMED state are defined with parameters ACTIVATION_ALTITUDE_M and ACTIVATION_SPEED_MPS in the [OA] section in config. If the drone (UAV) takes the altitude above ACTIVATION_ALTITUDE_M and the speed above ACTIVATION_SPEED_MPS, Obstacle Avoidance becomes ARMED, otherwise becomes DISARMED. The UgCS-CPM displays the Obstacle Avoidance ARMED or Obstacle Avoidance DISARMED message. ACTIVATION_ALTITUDE_M is optional parameter, if the ALTITUDE_SOURCE sets to ALTIMETER but the kit doesn't include the altimeter, ACTIVATION_ALTITUDE_M is ignored.

Obstacle detection is based on data received from the special collision detector or from a connected altimeter. Obstacle distance source sets in the SAFETY_DISTANCE_SOURCE in the [0A] section (see details in Obstacle Avoidance Configuration). Safe distance to an obstacle is configured on the Obstacle Avoidance widget in UgCS-CPM. When Obstacle Avoidance is in ARMED state and the distance to an obstacle is less than configured value, Obstacle Avoidance executes the safety action. Default safety action is returning home, see other safety actions in Obstacle Avoidance Configuration. UgCS-CPM shows current safety action on the Obstacle Avoidance widget.

Usage

- 1. Connect to UgCS SkyHub (see Connect to UgCS SkyHub Using Wi-Fi or Connect to UgCS SkyHub Using Ethernet) and set desired parameter values in the [OA] section (see details in Obstacle Avoidance Configuration). Disconnect from the UgCS SkyHub.
- 2. Start the PC and connect it to the Wi-Fi network. Start the UgCS and plan a mission for the drone.
- 3. Turn on the drone, payloads, and UgCS SkyHub device.
- 4. Connect the mobile device to the same Wi-Fi network as the PC. Turn on the DJI Remote Controller. Run the UgCS for DJI mobile application. Wait for the application shows the main window and connects to the UgCS. UCS connection indicator in the UgCS for DJI should become green.
- 5. Make sure that the drone with a correct profile appears in the UgCS on the PC and all drone indicators (battery, uplink, downlink, satellites) are green. Select the drone and the mission.
- 6. Start the UgCS-CPM application and connect to UgCS with default credentials. Check UgCS, Drone, and UgCS SkyHub indicators are green.
- 7. Add the Obstacle Avoidance widget and other widgets related to connected payloads by clicking the plus button. To monitor the distance to obstacles using the special obstacle detector, add the Payload Example widget by clicking the plus button and set Payload Message ID equals 195 by clicking the settings button.
- 8. Go to the Obstacle Avoidance widget, click the Read button to read current OA settings.
- 9. Set the Safe Distance to Obstacle to desired value. Make sure the Safety Action shows desired action.
- Press the Configure button. Wait for the Safety Distance to Obstacle CHANGED message.
- 11. Press the Activate button, if the mode is deactivated. Wait for the Obstacle Avoidance ACTIVATED message.
- 12. Upload the route to the drone using UgCS, launch auto, TTF, or Grasshopper Flight mode or start manual flight.
- 13. If the distance to obstacles drops below the Safe Distance (see step 9), the safety action will be activated.
- 14. You may interrupt the safety action using the DJI Remote Controller, then click the Deactivate button. To activate Obstacle Avoidance mode again press the Activate button on the Obstacle Avoidance widget.
- 15. Reconfiguring of Obstacle Avoidance mode is available any time.
- 16. After flights has been completed, return the drone to the desired landing position, and land. Press the Deactivate button on the Obstacle Avoidance widget.

About Log Files

Logs are stored in the skyhub_logs folder on the microSD card.

There are two types of obligatory log files:

- Position log: *-position.csv
- System log: *-system.log

Position logs (-position.csv suffix) contain drone position data (GPS coordinates, attitude, altitude, etc.) followed with the payload's specific parameters, if any. For more details, see Position Log.

System logs (-system.log extension) is a journal of various system events. Please keep it while contacting our support team.

Also, depending on the concrete payload used one may get following log files:

- GPR data log in SEG-Y format: *-gpr.sgy
- Echosounder data log in SEG-Y format: *-echo.sgy
- Echosounder data log in NMEA format: *-nmea.txt
- Gas detector data log in NMEA format: *-pergam-*.log

GPR data logs (-gpr.sgy suffix) contain radar trace data in SEG-Y format. These files can be analyzed in PC applications such as Prism2 or similar software capable to read and process GPR data in SEG-Y format.

Echosounder data logs in SEG-Y format (-echo.sgy suffix) contain sounding trace data. These file can also be analyzed in the SEG-Y data processing software.

Echosounder data logs in NMEA 0183 format (-nmea.txt suffix) contain bathymetric data. These files can be processed in any software capable of handling data in NMEA 0183 format (e.g. ReefMaster).

Gas detector data logs in mixed NMEA 0183 + raw messages format (-pergam.txt suffix) contain measured concentration data. These files can be processed in Pergam's proprietary software.

The filename contains the sequential numbers (000001, 000002, etc.) before the time synchronization and date/time (in YEAR-MONTH-DAY-HOUR-MIN-SEC format) after the synchronization with the GPS. The time is UTC.

Logging (except system log) is started only by command from UgCS-CPM (using the Record/Stop button) or automatically after taking off. The system log begins after onboard software is started.

The logs with the same file names have been created simultaneously. When the filename is to be changed (e.g. after the time synchronization) a new set of logs is created.

The logs can be automatically divided by file size, time, trace count (GPR or echosounder only), and waypoints. This option is turned off by default. To enable it, set corresponding

parameters to values greater than zero in the [APP] section. More than one parameter can be set simultaneously, in this case splitting will be fulfilled when the first of selected conditions occurs:

```
[APP]
LOG_SPLIT_SIZE_MB=0 ; megabytes
LOG_SPLIT_TIME_S=0 ; seconds
LOG_SPLIT_TRACES=0
LOG_SPLIT_WAYPOINTS=0 ; 0 or 1
```

When LOG_SPLIT_WAYPOINTS is set to 1 or another value greater than zero, each log file will contain one flight line with two waypoints.

There are two ways to download log files:

- Using UgCS-CPM (see Log Files Management)
- With any web browser via HTTP protocol (supported for UgCS SkyHub 2 only)

When the second way is chosen, open http://10.1.0.1 (Wi-Fi) or http://192.168.0.33 (Ethernet) in your browser and choose the required log file from a list of all recorded ones.

Position Log

Position logs contain common parameter group and the payload's specific parameters if any. Common parameter columns fill in with the latest received value. Specific parameter columns fill in at the moment when the payloads received data, excluding altimeters, its columns write as common parameters

If payloads don't receive data during doubled period sets in the

APP/POSITION_LOG_PERIOD_MS configuration parameter, Position Log starts logging only common parameters with given period.

COLUNM NAME	UNIT	DESCRIPTION
Common		
Elapsed	ms	Time elapsed since launch
Date		Date received from the drone. Format: yyyy/MM/dd
Time		Time received from the drone. Format: hh:mm:ss.ms
Pitch	deg	Pitch angle received from the drone
Roll	deg	Roll angle received from the drone

Table 6.1 – Position Log. Common Columns Description

COLUNM NAME	UNIT	DESCRIPTION
Yaw	deg	Yaw angle received from the drone
Latitude	deg	Latitude received from the drone in GPS system
Longitude	deg	Longitude received from the drone in GPS system
Altitude	m	Altitude relative to take-off point
Velocity	m/s	Horizontal velocity
RTK Status		 ON: RTK used OFF: RTK not used
Latitude RTK	deg	Latitude received from the drone using RTK station
Longitude RTK	deg	Longitude received from the drone using RTK station
Altitude RTK	m	Altitude AMSL received from the drone using RTK station

Table 6.2 – Position Log. Anemometer Columns Description

COLUNM NAME	UNIT	DESCRIPTION
Anemometer		
AIR:Speed	m/s	Measured wind speed
AIR:Direction	deg	Measured wind direction relative to magnetic north

Table 6.3 – Position Log. Altimeter Columns Description

COLUNM NAME	UNIT	DESCRIPTION
Altimeter		
ALT:Altitude	m	Measured altitude
ALT:Filtered Altitude	m	Altitude after applying LPF, see Altimeter Configuration

Table 6.4 – Position Log. Conductivity Meter Columns Description

COLUNM NAME	UNIT	DESCRIPTION
Conductivity Meter		
CM:CV0.5	mS/m	Measured conductivity for 0.5 m
CM:IV0.5	ppt	Measured inphase for 0.5 m
CM:CV1.0	mS/m	Measured conductivity for 1.0 m
CM:IV1.0	ppt	Measured inphase for 1.0 m

Table 6.5 – Position Log. Echosounder Columns Description

	UNIT	DESCRIPTION
Echosounder		
ECHO:Depth	m	Measured depth
ECHO:Depth Hi	m	Measured depth on high acoustic frequency. Support for dual frequency echosounder
ECHO:Depth Lo	m	Measured depth on low acoustic frequency. Support for dual frequency echosounder
ECHO:True Depth	m	Depth with taking into account sensor position relative to the waterline. True Depth calculates using ALT:Altitude value and the ECHOSOUNDER/CABLE_LENGTH_M configuration paramater.
ECHO:True Depth Hi	m	Depth on high acoustic frequency with taking into account sensor position relative to the waterline. True Depth Hi calculates using ALT:Altitude value and the ECHOSOUNDER/CABLE_LENGTH_M configuration paramater. Support for dual frequency echosounder

COLUNM NAME	UNIT	DESCRIPTION
ECHO:True Depth Lo	m	Depth on low acoustic frequency with taking into account sensor position relative to the waterline. True Depth Hi calculates using ALT:Altitude value and the ECHOSOUNDER/CABLE_LENGTH_M configuration paramater. Support for dual frequency echosounder
ECHO:Temperature	°C	Temperature in degrees Celsius
ECHO:Trace		Trace number in SEG-Y file
ECHO:Trace Hi		Trace number in SEG-Y file for high acoustic frequency. Support for dual frequency echosounder
ECHO:Trace Lo		Trace number in SEG-Y file for low acoustic frequency. Support for dual frequency echosounder
ECHO:Pitch	deg	Pitch angle received from the payload
ECHO:Roll	deg	Roll angle received from the payload

 Table 6.6 - Position Log. Gas Detector Columns Description

COLUNM NAME	UNIT	DESCRIPTION
Gas Detector		
GAS:Methane	ppm × m	Measured concentration in ppm (parts per million) per meter

COLUNM NAME	UNIT	DESCRIPTION
GAS:Status		 Specific status for the payload • 0: on measuring (but the intensity is low, measure value is not accurate as 1)
		 1: on measuring (with good intensity level)
		• 2-4 : N/A
		 5: not enough reflection (very low intensity, value is not accurate)
		 6: too much reflection (high density gas)
		 7: too much reflection (not able to measure by interfering of sunlight, etc)
		• 8: N/A
		• 9 : stop, no measuring

Table 6.7 – Position Log. GPS Receiver Columns Description

COLUNM NAME	UNIT	DESCRIPTION
GPS Receiver		
GNSS:Date		Date
GNSS:Time		Time
GNSS:Latitude	deg	Latitude
GNSS:Longitude	deg	Longitude
GNSS:Altitude	m	Altitude above/below mean-sea-level (geoid)

COLUNM NAME	UNIT	DESCRIPTION
GNSS:Quality Indicator		 GPS Quality Indicator 0: fix not available 1: GPS fix 2: Differential GPS fix 3: PPS fix 4: RTK 5: float RTK 6: estimated (dead reckoning) 7: manual input mode 8: simulation mode
GNSS:Satellites		Number of satellites in use
GNSS:HDOP	m	Horizontal dilution of precision
GNSS:Undulation	m	Geoidal separation, the difference between the WGS-84 earth ellipsoid and mean-sea-level (geoid). Negative value means mean-sea-level below ellipsoid

Table 6.8 – Position Log. Ground-Penetrating Radar Columns Description

COLUNM NAME	UNIT	DESCRIPTION
Ground-Penetrating Radar		
GPR:Trace		Trace number in SEG-Y file

Table 6.9 – Position Log. Metal Detector Columns Description

COLUNM NAME	UNIT	DESCRIPTION
Metal Detector		
MD:Channel 1	mV	Measured response in channel 1
MD:Channel 2	mV	Measured response in channel 2
MD:Channel 3	mV	Measured response in channel 3
MD:Channel 4	mV	Measured response in channel 4
MD:Top Channel	mV	Measured response in top channel
Table 6.10 – Position Log. Obstacle Detector Columns Description

COLUNM NAME	UNIT	DESCRIPTION
Obstacle Detector		
OBS:Sector1	m	Distance to the nearest obstacle in the sector 1
OBS:Sector2	m	Distance to the nearest obstacle in the sector 2 (central sector)
OBS:Sector3	m	Distance to the nearest obstacle in the sector 3

Table 6.11 – Position Log. Lightware SF30/D Altimeter Description

	UNIT	DESCRIPTION
Lightware SF30/D		
SF:RawF	m	First return raw
SF:FiltF	m	First return filtered
SF:SgthF	%	First return strength
SF:RawL	m	Last return raw
SF:FiltL	m	Last return filtered
SF:SgthL	%	Last return strength
SF:Noise		Background noise
SF:Temp	°C	Temperature in degrees Celsius

Log Files Management

- 1. Connect the PC to the UgCS SkyHub using Wi-Fi (see Connect to UgCS SkyHub Using Wi-Fi) or by wire (see Connect to UgCS SkyHub Using Ethernet).
- Go to Settings > UgCS SkyHub and make sure the IP-address corresponds to the connection way.
- 3. Open UgCS-CPM and go to Tools > Manage Logs.
- 4. Press the Browse button to choose the destination folder for log files.
- 5. Use the date and file extension filters to choose log files to be downloaded.
- 6. You can write custom extension if needed in the corresponding textbox.

- 7. Press the Download button and wait for downloading has been finished.
- 8. After the log files are not more needed you may delete them all using the Erase All button.
- 9. If you need to delete only certain files you may set the date and file extension filters then press the Erase button.
- 10. You also have 2 options for downloading and deleting depending on logs creation date: All dates and Today.
- 11. Note, if you choose Today, UgCS-CPM will work not only with today's logs but with yesterday's and tomorrow's. The reason is the possible difference between local date and the UTC one used in log file names.

Section 2012 CPM 3.13.0.859	- 🗆 X
← Tools	UgCS SkyHub (Aux) Settings
Manage Logs	•
 ● Today ○ All Dates ● *.csv ♥ *.log [● *.sgy ♥ *.txt [✓*.raw _*.usr
C:\Program Files (x86)	Browse
Selected: 0/119,16 MB	Download Erase
Free: 29,58/29,71 GB	Erase All
[SH] Firmware version: v2	.9.0.1562

Figure 6.4 – UgCS-CPM. Manage Logs window

Update Firmware

- 1. Connect the PC to the UgCS SkyHub using Wi-Fi (see Connect to UgCS SkyHub Using Wi-Fi) or by wire (see Connect to UgCS SkyHub Using Ethernet).
- 2. Open UgCS-CPM and go to Tools > Manage UgCS SkyHub
- 3. The UgCS SkyHub (Aux) indicator is green when there is the connection to the UgCS SkyHub device via Ethernet or Wi-Fi and red otherwise.

- 4. Since UgCS-CPM v3.15 this supports two hardware versions of UgCS SkyHub device. The Device line on the Manage UgCS SkyHub page displays the version of the connected device.
- 5. The latest UgCS SkyHub firmware compatible with the installed UgCS-CPM is located in UgCS-CPM/firmware folder. Also, the latest UgCS SkyHub firmware is available by the link https://integrated.ugcs.com/dl/s/skyhub-armhf for the UgCS SkyHub v2 device and by the link https://integrated.ugcs.com/dl/s/skyhub-arm64 for the UgCS SkyHub v3 device.
- 6. Click the Browse button and choose the firmware archive file. If the device version is UgCS SkyHub v2, should choose the file named as skyhub-v2-*.tar.gz. If the device version is UgCS SkyHub v3, should choose the skyhub-v3-*.tar.gz file. Then press the Upgrade button.
- 7. Wait for the progress bar becomes filled and check the firmware version after it appears.
- 8. Click the Back button to return on the main UgCS-CPM page. Wait for the UgCS SkyHub device reboots and click the Reconnect button.

UgCS-CPN	1 3.15.1.937	_		×
÷	Tools	UgCS SI Setti	kyHub ings	(Aux)
Manage L	lgCS SkyHub			•
Firmware	2.11.1 build 20)44		
Device	UgCS SkyHub	v2		
File	skyhub-v2-2.1	1.1.2044.tar.g	Bro	owse
	Upgrade	Reboot		
To Update UgCS SkyHub firmware PC has to be connected to the UgCS SkyHub Wi-fi access point. After powering on the UgCS SkyHub operates as Wi-Fi access point with following credentials: SSID: UgCS-SkyHub-****** (where ****** is the UgCS SkyHub serial number) Passphrase: 12341234 Important: It is strongly recommended to switch off Remote Controller before any operations with the UgCS SkyHub Wi-Fi.				
[SH] Rebo	oting			E

Figure 6.5 – UgCS-CPM. Manage UgCS SkyHub window

Uninstall Firmware

Important: This article is intended for advanced users only.

1. Connect the PC to the UgCS SkyHub using Wi-Fi (see Connect to UgCS SkyHub Using Wi-Fi) or by wire (see Connect to UgCS SkyHub Using Ethernet).

To uninstall the firmware on the UgCS SkyHub 3 device, launch the command:

\$ dpkg -r ugcs-skyhub

The configuration file and log files are kept.

The following steps describe the uninstall procedure for the UgCS SkyHub 2.

- 2. Download the latest firmware from our website: https://integrated.ugcs.com/dl/s/skyhub-armhf
- 3. Upload manually the firmware to MicroSD root (path: /run/media/mmcblk1p1) by FTP/SCP client.
- 4. Connect to UgCS SkyHub via ssh and move to the MicroSD root.
- 5. Unpack the firmware package and manually run the script to uninstall the UgCS SkyHub firmware from the device:
 - \$ tar -xvf skyhub-*.tar.gz
 - \$ skyhub-*/uninstall.sh

If the firmware is uninstalled, the configuration file is also deleted, but log files in the folder /run/media/mmcblk1p1/skyhub_logs/ are kept.

7 · CONFIGURATION PARAMETERS

- Configuration file location: /etc/skyhub/skyhub.conf
- File format: INI (https://en.wikipedia.org/wiki/INI_file)

Important: The UgCS SkyHub device should be restarted after any change in the configuration file by reboot command or by power cycling.

UgCS SkyHub Configuration

Table 7.1 – UgCS SkyHub settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[APP]		
DISABLE_WIFI_IN_AIR	false	Disable Wi-Fi when the drone is in air. Set to true for Wi-Fi stops working after takeoff.
LOG_SPLIT_SIZE_MB	0	Log splitting by file size, MB
LOG_SPLIT_TIME_S	0	Period of log splitting, s
LOG_SPLIT_TRACES	0	Log splitting by trace number (applicable to GPR and echosounder only)
LOG_SPLIT_WAYPOINTS	0	Log splitting by waypoint count. When set to 1, each log will contain one line with two waypoints.
MIN_FREE_SPACE_MB	300	Minimum allowable free space on the microSD card, MB
PAYLOAD_START_DELAY_S	5	Start payload plugins delay, s
POSITION_LOG_PERIOD_MS	100	Period of writing to position log, ms
STATUS_PERIOD_MS	500	Period of payload status sending to ground, ms
TELEMETRY_PERIOD_MS	200	Telemetry data refresh period, ms
[AUTOPILOTS]		

PARAMETER	DEFAULT VALUE	DESCRIPTION
DJI	false	Using the DJI autopilot except for support for DJI M300 RTK. Set to true if DJI drone is used.
DJI_M	false	Using the DJI autopilot to support DJI M300 RTK. Set to true if DJI M300 RTK drone is used.
MAVPILOT	false	Using the MAVLink-based autopilot. Set to true if ArduPilot / PX4 based drone is used.
[PAYLOADS]		
DROP_MESSENGER	false	Using the Ruttner water sampler. Set to true if used.
ECHOLOGGER_DUAL	false	Using the Echologger ECT D052/D032 echosounder. Set to true if used.
ECHOLOGGER_ECT	false	Using the Echologger ECT400 echosounder. Set to true if used.
FTTECHNOLOGIES_FT742_SM	false	Using the FT Technologies FT742-SM anemometer. Set to true if used.
GEONICS_EM_38_MK2	false	Using the Geonics EM38-MK2 conductivity meter. Set to true if used.
GEONICS_EM_61	false	Using the Geonics EM-61 metal detector. Set to true if used.
GNSS	false	Using the Emlid Reach M2 GPS receiver. Set to true if used.
LIGHTWARE_SF30	false	Using the Lightware SF30/D laser altimeter. Set to true if used.

PARAMETER	DEFAULT VALUE	DESCRIPTION
NANORADAR_MR	false	Using the Nanoradar MR72 radar obstacle detector. Set to true if used.
NANORADAR_NRA	false	Using the Nanoradar NRA24 radar altimeter. Set to true if used.
PERGAM_FALCON	false	Using the Pergam Laser Falcon gas detector. Set to true if used.
PERGAM_LMM	false	Using the Pergam LMM gas detector. Set to true if used.
RADARTEAM_COBRA	false	Using the Radarteam Cobra low frequency GPR. Set to true if used.
RADSYS_ZOND	false	Using the RadSys Zond-12e high frequency GPR. Set to true if used.

Table 7.2 – UgCS SkyHub advanced settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[APP]		
SYSINFO_LOG	false	Log the system info such as CPU temperature, CPU frequencies, and CPU usage (used for debugging only)
VERBOSE	false	Log the debug info to the system log (used for debugging only)
[PAYLOADS]		
PAYLOAD_EXAMPLE	false	Using the custom payload. Set to true if used.

Autopilot Configuration

DJI Autopilot Configuration

Table 7.3 – DJI autopilot settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[DJI]		
APP_ID	1071019	DJI App ID
APP_KEY	4287330b25	DJI App Key
BAUD_RATE	230400	UART baud rate, bps
RESPONSE_TIMEOUT_S	1	DJI response timeout, s
SENDING_PERIOD_MS	20	Period of data sending to ground, ms
SERIAL_DEVICE	UgCS SkyHub 2 : /dev/ttymxc3 UgCS SkyHub 3 : /dev/ttyS0	UART serial device. Default value depends on the UgCS SkyHub generation

ArduPilot/PX4 Configuration

Table 7.4 – ArduPilot/PX4 connection settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[MAV]		
BAUD_RATE	230400	UART baud rate, bps
CONNECTION_TYPE	UART	Connection type: • UART: to connect through UART • TCP: to connect through Ethernet
COMPONENT_ID	5	MAVLink component Id of UgCS SkyHub
SENDING_PERIOD_MS	20	Delay between sends of sensor data from internal queue to the ground station.

PARAMETER	DEFAULT VALUE	DESCRIPTION
SERIAL_DEVICE	UgCS SkyHub 2 : /dev/ttymxc3 UgCS SkyHub 3 : /dev/ttyS0	UART serial device. Default value depends on the UgCS SkyHub generation
SYSTEM_ID	2	MAVLink system Id of UgCS SkyHub
TELEMETRY_RATE	10	Telemetry frequency, Hz
V2_EXTENSION	false	Using MAVLink V2_EXTENSION messages. Set to true to enable it.

Flight Control Mode Configuration

True Terrain Following Configuration

Table 7.5 – TTF settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[TF]		
ALTITUDE_SOURCE	ALTIMETER	 ALTIMETER: Use external altimeter as altitude source AUTOPILOT: Use autopiot as altitude source
FAIL_SAFE_ALTITUDE_M	20	Fail safe altitude, m
TARGET_ALTITUDE_M	3	Target flight altitude, m

Grasshopper Configuration

Table 7.6 – GH settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[GH]		
ALTITUDE_SOURCE	ALTIMETER	 ALTIMETER: Use external altimeter as altitude source AUTOPILOT: Use autopilot as altitude source
DESCENT_ALTITUDE_M	3	Target descending altitude, m
DESCENT_SPEED_MPS	1	Descent rate, m/s
FAIL_SAFE_ALTITUDE_M	5	Fail safe altitude, m
TARGET_ALTITUDE_M	5	Target flight altitude, m

Obstacle Avoidance Configuration

Table 7.7 – OA settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[OA]		
ACTION	RETURN_TO_H OME	 Safety action if the obstacle detected RETURN_TO_HOME: Activate return to home function WARNING: Show warning message NOTHING: Do nothing
ACTIVATED	false	Activate or deactivate Obstacle Avoidance mode
ACTIVATION_ALTITUDE_M	10	Altitude above which Obstacle Avoidance mode switches to <i>ARMED</i> , m
ACTIVATION_SPEED_MPS	0.2	Speed (relative to the ground) above which Obstacle Avoidance mode switches to <i>ARMED</i> , m/s
ALTITUDE_SOURCE	ALTIMETER	 ALTIMETER: Use external altimeter as altitude source AUTOPILOT: Use autopilot as altitude source. Attention! Be careful using AUTOPILOT, the altitude calculates as difference between current AMSL and AMSL of the latest taking off.
SAFETY_DISTANCE_LIMIT_M	5	Distance less which safety action activates, m
SAFETY_DISTANCE_SOURCE	OBSTACLE_DET ECTOR	 OBSTACLE_DETECTOR: Use external obstacle detector as obstacle distance source ALTIMETER: Use external altimeter as obstacle distance source

Navigation Configuration

See the Guidelines for navigation values choosing section for tips on tuning.

Table 7.8 – Navigation settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[NAV]		
ACCEPTANCE_RADIUS_M	0.5 m Permissible range: 0.01 – 10 m	The distance to the waypoint after which the waypoint is considered reached.
HORIZONTAL_ACCEL_MSS	1 m/s2 Permissible range: 0 - 10 m/s2	Acceleration in the horizontal plane (XY). The trajectory will be built in such a way that the drone's acceleration does not exceed the specified value. The trajectory will also be built when turning, and the radius of curvature depends on this acceleration when performing the BankTurn maneuver.
MAX_CLIMB_SPEED_MS	5 m/s Permissible range: 0 - 10 m/s	Maximum vertical climbing speed. Specifies a constraint when calculating the trajectory. The device will not exceed this speed when moving along the route and when avoiding obstacles.
MAX_DESCENT_SPEED_MS	5 m/s Permissible range: 0 - 10 m/s	Maximum vertical descend speed. Specifies a constraint then calculating the trajectory. The device will not exceed this speed when moving along the route and when avoiding obstacles.
MAX_JERK	0.1 m/s3 Permissible range: 0.1 – 1 m/s3	The maximum rate of change of acceleration during the calculation of the trajectory. The trajectory is calculated based on the constraint that the vehicle cannot change acceleration faster than the parameter value. While following the route, the value is ignored and not checked.

PARAMETER	DEFAULT VALUE	DESCRIPTION
POS_P	0.5 Permissible range: 0.1 – 1	The proportional component of the PID controller for calculating the speed from the position error in the horizontal plane.
POS_Z_P	0.5 Permissible range: 0.1 – 1	The proportional component of the PID controller for calculating the speed from the position error in the vertical plane. Responsible for maintaining the vertical component of speed by the autopilot.
VELOCITY_FEED_FORWARD	0 m/s Permissible range: 0 – 1.9	An experimental parameter for the delay compensation between transmitting the target horizontal speed and receiving the actual value from the flight controller.
VELOCITY_Z_FEED_FORWARD	0 m/s Permissible range: 0 – 1.9	An experimental parameter for the delay compensation between transmitting the target vertical speed and receiving the actual value from the flight controller.
VERTICAL_ACCEL_MSS	0.5 m/s2	The acceleration the drone will perform vertical maneuvers (along the Z axis).
YAW_RATE_DS	40 deg/sec	The turn rate in the horizontal plane (XY) at waypoints. Recomended range from 15 to 60 deg/sec
DEBUG_LOG	false Acceptable values: false, true	Enable debug mode. In case of unexpected situations that require the collection and analysis of work logs, this value can be set to "true". The debug log will record controller operation events for further analisys of the processing logic.

Configure TTF Feeder

You may edit /etc/skyhub/skyhub.laucnh and add these lines into it:

ttf_feeder = LifecycleNode(ppackage='ugcs_skyhub', executable='ttf_feed', name='ttf_feed', namespace='', output='screen')
ld.add_action(ttf_feeder)

This node works as a single instance. You should provide the only section of monitor paramenters for all configured altimenter instances:

[_MONITOR_SKYHUB%255FTTF%255FFEED_0] SOURCE=v1:altimeter:Lightware_SF30D:0

Table 7.9 – ROS-based TTF Feeder settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[_MONITOR_SKYHUB%255FTTF%255FFEED_0]		
SOURCE	v1:altimeter::	Mask to select altimeneter as TTF source

Altimeter Configuration

Table 7.10 – Common altimeter settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[ALTIMETER]		
MAX_ALTITUDE_M	20	Max altitude value, m
MIN_ALTITUDE_M	0.5	Min altitude value, m
ZERO_LEVEL_M	0	Altimeter position above ground level, m
IGNORE_ERRORS	0	Maximum number of ignoring fails received in a row
FILTER_TYPE	NONE	 Type of filtering used for altimeter data NONE: no filtering be applied LP: low-pass filter EF: estimator filter
EF_FILTER_GATE	3	Innovation consistency gate size (STD). Determines how many standard deviations can me accepted before mesurments may be considered as invalid. Available values: 1.0-10.0

PARAMETER	DEFAULT VALUE	DESCRIPTION
EF_FILTER_PROC_NOISE	0.5	Process noise for terrain offset, m/s. Less values will softer result greater. Range 0.1 - 1.0
EF_FILTER_RNG_NOISE	0.2	Altimeter noise. Less values for more precise sensor, m. Range 0.01 - 0.4
EF_FILTER_TERR_GRAD	0.1	Expected terrain gradient, m/m. Less value for more flat surfaces. Range 0.0 - 1
LP_FILTER_LENGTH	0	(experimental option) Low-pass filter length. Available options are: 0 (filter disabled), 8, 12, 16, 20, 24, 28, 32

Nanoradar NRA24 Altimeter Configuration

Table 7.11 – Nanoradar NRA24 altimeter settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[NANORADAR_NRA]		
AVERAGING	2	Averaging factor. The more is the smoother but rarer.
BAUD_RATE	115200	UART baud rate, bps
SERIAL_DEVICE	UgCS SkyHub 2: /dev/ttymxc5 UgCS SkyHub 3: /dev/ttyAMA1	UART serial device. Default value depends on the UgCS SkyHub generation

Lightware SF30/D Altimeter Configuration

Table 7.12 – Lightware SF30/D altimeter settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[LIGHTWARE_SF30]		

87

PARAMETER	DEFAULT VALUE	DESCRIPTION
EXTENDED_CSV_LOG	false	Log extended data to CSV position log with prefix SF. See details in Position Log
RATE_HZ	39	Data sampling update rate. Only fixed values are available: 20010, 10005, 5002, 2501, 1250, 625, 312, 156, 78, 39
TTF_IS_FILTERED	true	Defines the distance for TTF or GH mode • true : filtered distance is used • false : raw distance is used
TTF_RETURN_MODE	LAST	Defines the return for TTF or GH mode • FIRST: first return is used • LAST: last return is used
TTF_SUPPORT	true	Defines whether Lightware SF30/D is used as the altimeter for TTF or GH mode
UART_BAUD_RATE	115200	UART baud rate, bps
UART_SERIAL_DEVICE	/dev/ttyAMA1	UART serial device

ROS-based Lightware SF30/D Altimeter Configuration

You may edit /etc/skyhub/skyhub.laucnh and put these lines into it, or create new file and refere it with LAUNCH parameter of DBUS Bridge plugin:

ugcs_skyhub/launch/skyhub.launch.py

from launch import LaunchDescription
from launch_ros.actions import LifecycleNode
import launch_ros.events
import launch_ros.events.lifecycle
import launch
import launch
import launch.events

```
import lifecycle_msgs.msg
launch.actions.DeclareLaunchArgument(
"log_level",
default_value=["info"],
description="Logging level",
)
def generate_launch_description():
    ld = LaunchDescription()
    logger = launch.substitutions.LaunchConfiguration("log_level")
    skyhub_gateway_node = LifecycleNode(package='ugcs_skyhub', executable='gateway',
                name='gateway', namespace='', output='screen',
arguments=['--ros-args', '--log-level', logger])
    altimeter = LifecycleNode(package='skyhub_ros_altimeter', executable='skyhub_ros_altimeter',
                 name='skyhub_ros_altimeter', namespace='', output='screen',
arguments=['--ros-args', '--log-level', logger])
    ld.add_action(skyhub_gateway_node)
    ld.add_action(altimeter)
     return ld
```

This driver supports multiple instances of SD30D altimeters connected to the same UgCS SkyHub device. You should provide additional section for every configured instance (zero-base):

[_ALTIMETER_LIGHTWARE%255FSF30D_0] IS_FILTERED=false RATE_HZ=39 RETURN_MODE=LAST UART_BAUD_RATE=115200 UART_SERIAL_DEVICE=/dev/ttyAMA1

PARAMETER	DEFAULT VALUE	DESCRIPTION
[ROS_LIGHTWARE_SF30]		
RATE_HZ	39	Data sampling update rate. Only fixed values are available: 20010, 10005, 5002, 2501, 1250, 625, 312, 156, 78, 39
IS_FILTERED	true	Defines the distance for TTF or GH mode • true : filtered distance is used • false : raw distance is used

Table 7.13 – ROS-based Lightware SF30/D altimeter settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
RETURN_MODE	LAST	Defines the return for TTF or GH mode • FIRST: first return is used • LAST: last return is used
UART_BAUD_RATE	115200	UART baud rate, bps
UART_SERIAL_DEVICE	/dev/ttyAMA1	UART serial device

ROS-based Ainteins US-D1 Altimeter Configuration

You may edit /etc/skyhub/skyhub.laucnh and put these lines into it, or create new file and refere it with LAUNCH parameter of DBUS Bridge plugin:

```
# ugcs_skyhub/launch/skyhub.launch.py
from launch import LaunchDescription
from launch_ros.actions import LifecycleNode
import launch_ros.actions
import launch_ros.events
import launch_ros.events.lifecycle
import launch
import launch.actions
import launch.events
import lifecycle_msgs.msg
launch.actions.DeclareLaunchArgument(
"log_level",
default_value=["info"],
description="Logging level",
)
def generate_launch_description():
   ld = LaunchDescription()
   logger = launch.substitutions.LaunchConfiguration("log_level")
   altimeter = LifecycleNode(package='skyhub_ros_altimeter', executable='skyhub_ainteins_us_d1',
              name='skyhub_ainteins_us_d1', namespace='', output='screen',
arguments=['--ros-args', '--log-level', logger])
   ld.add_action(skyhub_gateway_node)
   ld.add_action(altimeter)
   return ld
```

This driver supports multiple instances of US-D1 altimeters connected to the same UgCS SkyHub device. You should provide additional section for every configured instance (zero-base):

[_ALTIMETER_AINSTEIN%255FUS%255FD1_0] UART_BAUD_RATE=115200 UART_SERIAL_DEVICE=/dev/ttyAMA1

Table 7.14 – ROS-based Ainteins US-D1 altimeter settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[ROS_US_D1]		
UART_BAUD_RATE	115200	UART baud rate, bps
UART_SERIAL_DEVICE	/dev/ttyAMA1	UART serial device

Configure Altimeter Monitor

You may edit /etc/skyhub/skyhub.laucnh and add these lines into it:

alt_monitor = LifecycleNode(package='ugcs_skyhub', executable='altimeter_monitor', name='monitor', namespace='', output='screen')
ld.add_action(alt_monitor)

This node works as a single instance. You should provide the only section of monitor paramenters for all configured altimenter instances:

[_MONITOR_SKYHUB%255FALTIMETER%255FMONITOR_0]
DATALOG=25376e65-2866-40b4-bbdf-7dfd08fb7c32
SOURCE=v1:altimeter::

Table 7.15 – ROS-based Altimeter monitor settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[_MONITOR_SKYHUB%255FALTIMETER%255FMONITOR_0]		
DATALOG		Datalog ID to write altimeter values
SOURCE	v1:altimeter::	Mask to select altimeneters to monitor

GPR Configuration

Low Frequency GPR Configuration

Table 7.16 – Low Frequency GPR settings

	DEFAULT VALUE	DESCRIPTION
[RADARTEAM_COBRA]		
BLUETOOTH_NAME	RT[0-9]+	Bluetooth name of GPR device. May be a regular expression.
MODEL	SE-150	GPR model. Added to the SEG-Y log header.
TELEMETRY_PERIOD_MS	2000	Telemetry data refresh rate, ms
TIME_RANGE_NS	800	Trace time range, ns:800 for newer devices1600 for older devices

High Frequency GPR Configuration

Table 7.17 – High Frequency GPR settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[RADSYS_ZOND]		
FILTER_1	OFF	 High pass filter for the first channel: OFF: High pass filter is off WEAK: Weak high pass filter STRONG: Strong high pass filter SUPER_STRONG: Super strong high pass filter This parameter is also applicable in single-channel mode.
FILTER_2	OFF	High pass filter for the second channel. See FILTER_1 values.
IP_ADDRESS	192.168.0.10	IP-address of the GPR
MODE	CHANNEL_1	 GPR channel mode: CHANNEL_1: Single-channel, the first channel is active CHANNEL_2: Single-channel, the second channel is active TWO_CHANNELS: Dual-channel, both channels are active TX1_RX2: The first channel transmitter to the second channel receiver TX2_RX1: The second channel transmitter to the first channel receiver CIRCLE: Circle mode
OFFSET_FORWARD_M_1	0	Offset of the first antenna alongside the heading line, m
OFFSET_FORWARD_M_2	0	Offset of the second antenna alongside the heading line, m
OFFSET_RIGHT_M_1	0	Offset of the first antenna alongside the traverse line, m

PARAMETER	DEFAULT VALUE	DESCRIPTION
OFFSET_RIGHT_M_2	0	Offset of the second antenna alongside the traverse line, m
PORT	23	TCP-port of the GPR
PULSE_DELAY_1	0	Pulse delay for the first channel. Should be set up during the calibration. From 0 to 1023 . This parameter is also applicable in single-channel mode and with the Aero version.
PULSE_DELAY_2	0	Pulse delay for the second channel. See PULSE_DELAY_1 values.
RAW_LOG	false	Log the raw data from echosounder (used for debugging only)
SOUNDING_MODE	SOUNDING	 Possible values are: SOUNDING: Normal operation mode CALIBRATION: Sine wave with frequency 20 MHz TEST: Sine wave with constant period for any settings
SAMPLE_COUNT	256	Sample count per trace: 128, 256, 512, 1024
TELEMETRY_PERIOD_MS	2000	Telemetry data refresh rate, ms
TIME_RANGE_NS_1	300	Trace time range for the first channel, ns: 50, 100, 200, 300, 500, 800, 1200, 2000. This parameter is also applicable in single-channel mode and with the Aero version. Trace time range for the Aero version, ns: 50, 100, 200, 300, 500.
TIME_RANGE_NS_2	300	Trace time range for the second channel, ns. See TIME_RANGE_1 values.

Note: When using the Aero version of RadSys Zond radar, all fields are ignored apart PULSE_DELAY_1 and TIME_RANGE_NS_1.

RadSys zGPR Configuration

Table 7.18 — RadSys zGPR settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[RADSYS_ZGPR]		
IP_ADDRESS	192.168.0.10	IP-address of the zGPR
PORT	23	TCP-port of the GPR
PULSE_DELAY	174	Pulse delay should be set up during the calibration. From 0 to 7000
SAMPLE_COUNT	512	Sample count per trace. From 32 to 8192
STACKING	128	Defines how many traces are stacked. From 1 to 65535
TELEMETRY_PERIOD_MS	2000	Telemetry data refresh rate, ms
TIME_RANGE_PER_SAMPLE	7	Encodes the trace time range per sample. From 0 to 14: 0: 17.857 ps 1: 35.714 ps 2: 71.429 ps 3: 89.286 ps 4: 125.000 ps 5: 142.857 ps 6: 178.571 ps 7: 250.000 ps 8: 357.143 ps 9: 500.000 ps 10: 625.000 ps 11: 714.286 ps 12: 1.00 ns 13: 1.25 ns 14: 2.50 ns

Echosounder Configuration

Table 7.19 – Common echosounder settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[ECHOSOUNDER]		
CABLE_LENGTH_M	0	Echosounder cable length, m
MAX_DEPTH_M	20	Max depth value, m
MIN_DEPTH_M	0.5	Min depth value, m

Echologger ECT400 Configuration

Table 7.20 – Echologger ECT400 settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[ECHOLOGGER_ECT]		
ALT_THRESHOLD_PCT	10	Altimeter threshold in percents of a full scale
BAUD_RATE	115200	UART baud rate, bps
DEADZONE_MM	300	Near field zone where detection is ignored, mm
INTERVAL_S	0.1	Time between measures, sec
GAIN_DB	0	Amplifying gain, dB
MAX_SENSOR_ANGLE_DEG	10	Data filtering by tilt. The data are not recorded if the sensor tilt value is greater than the specified value, degree.

PARAMETER	DEFAULT VALUE	DESCRIPTION
MIN_SENSOR_DEPTH_M	0.1	Data filtering by sensor dept in the water. Sensor depth is calculated as a difference between the length of the cable (set by CABLE_LENGTH_M parameter in the ECHOSOUNDER section) and current altitude. The data are not recorded if the sensor depth is lower than specified value, m.
MODE	NMEA	 NMEA: Ouptut data in NMEA format only ECHOSOUNDER: Output data in NMEA and SEG-Y formats
RANGE_M	8	Measuring range, m
RAW_LOG	false	Log the raw data from echosounder (used for debugging only)
SERIAL_DEVICE	UgCS SkyHub 2: /dev/ttymxc1 UgCS SkyHub 3: /dev/ttyAMA3	Serial device name. Default value depends on the UgCS SkyHub generation
TXLENGTH_US	50	Transmitted pulse length, micro second. The value is automatically increased if it is less than the required value.

Echologger ECT D052/D032 Configuration

	I	able 7.21 – Echologyel ECT D052/D052 Settings
PARAMETER	DEFAULT VALUE	DESCRIPTION
[ECHOLOGGER_DUAL]		
ALT_THRESHOLD_HIGH_PCT	10	Altimeter threshold in percents of a full scale for high acoustic frequency
ALT_THRESHOLD_LOW_PCT	10	Altimeter threshold in percents of a full scale for low acoustic frequency

Table 7.21 – Echologger ECT D052/D032 settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
BAUD_RATE	115200	UART baud rate, bps
DEADZONE_HIGH_MM	500	Near field zone where detection is ignored for high acoustic frequency, mm
DEADZONE_LOW_MM	1000	Near field zone where detection is ignored for low acoustic frequency, mm. To support D032 model recommend changing the value to 1500 mm.
INTERVAL_S	0.1	Time between measures, sec
FREQUENCY_HIGH_HZ	200000	High acoustic frequency, Hz
FREQUENCY_LOW_HZ	50000	Low acoustic frequency, Hz. To support D032 model change the value to 30000 Hz.
GAIN_HIGH_DB	0	Amplifying gain for high acoustic frequency, dB
GAIN_LOW_DB	0	Amplifying gain for low acoustic frequency, dB
MAX_SENSOR_ANGLE_DEG	10	Data filtering by tilt. The data are not recorded if the sensor tilt value is greater than the specified value, degree.
MIN_SENSOR_DEPTH_M	0.1	Data filtering by sensor dept in the water. Sensor depth is calculated as a difference between the length of the cable (set by CABLE_LENGTH_M parameter in the ECHOSOUNDER section) and current altitude. The data are not recorded if the sensor depth is lower than specified value, m.
MODE	NMEA	 NMEA: Ouptut data in NMEA format only ECHOSOUNDER: Output data in NMEA and SEG-Y formats

PARAMETER	DEFAULT VALUE	DESCRIPTION
RANGE_HIGH_M	10	Measuring range for high acoustic frequency, m. Only fixed ranges are available: 1, 1.5, 2, 3, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 200 meters
RANGE_LOW_M	10	Measuring range for low acoustic frequency, m. Only fixed ranges are available: 1, 1.5, 2, 3, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 200 meters
RAW_LOG	false	Log the raw data from echosounder (used for debugging only)
SAMPLING_RATE_HZ	100000	Internal ADC sampling frequency, Hz. The sampling rate is relevant only for the ECHOSOUNDER mode. Only fixed ranges are available: 100000, 50000, 25000, 12500, 6250 Hz
SERIAL_DEVICE	UgCS SkyHub 2: /dev/ttymxc1 UgCS SkyHub 3: /dev/ttyAMA3	Serial device name. Default value depends on the UgCS SkyHub generation
TXLENGTH_HIGH_US	50	Transmitted pulse length for high acoustic frequency, microsecond
TXLENGTH_LOW_US	50	Transmitted pulse length for low acoustic frequency, microsecond

Gas Detector Configuration

Table 7.22 – Common gas detector settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[GAS_DETECTOR]		
MAX_CONCENTRATION_PPM	1000	Max gas concentration, PPM
MIN_CONCENTRATION_PPM	0	Min gas concentration, PPM
ZERO_LEVEL_PPM	0	Background gas concentration value to be subtracted, PPM

Pergam Laser Falcon Configuration

Table 7.23 – Pergam Laser Falcon settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[PERGAM_FALCON]		
FREQUENCY_HZ	2	Measuring frequency, Hz. Available values: 2 Hz, 1 Hz, or lower (see Note under the table)
SERIAL_DEVICE	/dev/ttyUSB0	UART serial device. The built-in Pergam Laser Falcon UART adapter is used.

Note: The Pergam Laser Falcon measures the methane concentration every 100ms, and a series of 5 measurements are combined into an average. The average and intermediate measurements are stored on the Pergam Laser Falcon board and can be sent upon request. The stored information is updated every 500 ms. The FREQUENCY_HZ parameter only sets the frequency of requests from SkyHub to the Pergam Laser Falcon, while the Pergam Laser Falcon continues to work according to its scheme.

Pergam LMm Configuration

Table 7.24 – Pergam LMm settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[PERGAM_LMM]		
FREQUENCY_HZ	2	Measuring frequency, Hz. Available values: 2 Hz, 1 Hz, or lower.
SERIAL_DEVICE	UgCS SkyHub 2: /dev/ttymxc5 UgCS SkyHub 3: /dev/ttyAMA1	UART serial device. Default value depends on the UgCS SkyHub generation

Metal Detector Configuration

Table 7.25 – Common metal detector settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[METAL_DETECTOR]		
MAX_OUTPUT_VALUE_MV	1000	Max output metal detector value, mV
MIN_OUTPUT_VALUE_MV	0	Min output metal detector value, mV

Geonics EM-61 Configuration

Table 7.26 – Geonics EM-61 settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[GEONICS_EM_61]		
BAUD_RATE	9600	RS232 baud rate, bps
BLUETOOTH_NAME	EM61MK2[^*]+	Bluetooth name of the device. May be a regular expression.

PARAMETER	DEFAULT VALUE	DESCRIPTION
CONNECTION_TYPE	RS232	 Connection type: BLUETOOTH: to connect through bluetooth RS232: to connect through UART
EXTENDED_CSV_LOG	false	Log extended raw data to CSV position log with prefix MD
GAIN	HIGH	Defines the gain: • HIGH : High gain • LOW : Low gain
RAW_LOG	false	Log the raw data from metal detector (used for debugging only)
SERIAL_DEVICE	UgCS SkyHub 2: /dev/ttymxc1 UgCS SkyHub 3: /dev/ttyAMA3	RS232 serial device. Default value depends on the UgCS SkyHub generation

Conductivity Meter Configuration

Table 7.27 – Common conductivity meter settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[CONDUCTIVITY_METER]		
MAX_OUTPUT_VALUE_MS_M	500	Max altitude value, mS/m
MIN_OUTPUT_VALUE_MS_M	0	Min altitude value, mS/m

Geonics EM38-MK2 Configuration

Table 7.28 – Geonics EM38-MK2 settings

	DEFAULT VALUE	DESCRIPTION
[GEONICS_EM_38_MK2]		
BAUD_RATE	19200	UART baud rate, bps
BLUETOOTH_NAME	em38mk2[^*]+	Bluetooth name of the device. May be a regular expression.
CHANNEL_NUMBER	3	Channel number to display on the Conductivity widget in UgCS-CPM. Available values: 1-4. • 1: conductivity (for 0.5 m in mS/m) • 2: inphase (for 0.5 m in ppt) • 3: conductivity (for 1.0 m in mS/m) • 4: inphase (for 1.0 m in ppt)
CONNECTION_TYPE	RS232	 Connection type: BLUETOOTH: to connect through bluetooth RS232: to connect through UART
SERIAL_DEVICE	UgCS SkyHub 2: /dev/ttymxc1 UgCS SkyHub 3: /dev/ttyAMA3	UART serial device. The USB-UART adapter is used. Default value depends on the UgCS SkyHub generation

Drop Messenger Configuration

Table 7.29 – Pergam Laser Falcon settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[DROP_MESSENGER		
SERVO_LOCK_PULSE_MS	1.5	PWM pulse width to lock the drop messenger, ms.
SERVO_PERIOD_MS	10	PWM signal period, ms.
SERVO_UNLOCK_PULSE_MS	0.5	PWM pulse width to unlock the drop messenger, ms.

Anemometer Configuration

Table 7.30 – Common anemometer settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[ANEMOMETER]		
MAX_WIND_SPEED_MPS	10	Max wind speed value, m
MIN_WIND_SPEED_MPS	0	Min wind speed value, m

FT Technologies FT742-SM Configuration

Table 7.31 – FT Technologies FT742-SM settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[FTTECHNOLOGIES_FT742_SM]	
BAUD_RATE	38400	UART baud rate, bps
SERIAL_DEVICE	/dev/ttyACM0	UART serial device. The USB-UART adapter is used.

Obstacle Detector Configuration

Nanoradar MR72 Configuration

Table 7.32 – Nanoradar MR72 settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[NANORADAR_MR]		
BAUD_RATE	115200	UART baud rate, bps
IGNORE_SIDE_SECTORS	false	Ignore side sectors during distance to obstacle definition
SERIAL_DEVICE	UgCS SkyHub 2: /dev/ttymxc1 UgCS SkyHub 3: /dev/ttyAMA3	UART serial device. Default value depends on the UgCS SkyHub generation

GPS Receiver Configuration

Table 7.33 – GPS Receiver settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[GNSS]		
BAUD_RATE	115200	UART baud rate, bps
DATE_FORMAT	yyyy/MM/dd	Data format in Position Log
PAYLOAD_ID	193	Payload ID to display value on the UgCS-CPM widget
SERIAL_DEVICE	UgCS SkyHub 2 : /dev/ttymxc1 UgCS SkyHub 3 : /dev/ttyAMA3	Device name. Default value depends on the UgCS SkyHub generation
TIME_FORMAT	HH:mm:ss.zzz	Time format in Position Log

Important: GPS Receiver loads settings from separate config file. See details in GPS Receiver Setup.

Outputs Configuration

GPS Output Configuration

Table 7.34 – GPS Output settings

	DEFAULT VALUE	DESCRIPTION
[OUTPUT_GPS]		
ADDRESS	UgCS SkyHub 2 : /dev/ttymxc1 UgCS SkyHub 3 : /dev/ttyAMA3	UART serial device. Default value depends on the UgCS SkyHub generation
BAUD_RATE	19200	UART baud rate, bps
FREQUENCY_HZ	5	Frequency of message sending. Only fixed ranges are available: 1, 2, 3, 4, 5 Hz.

DBUS Bridge Configuration

Table 7.35 – DBUS Bridge settings

PARAMETER	DEFAULT VALUE	DESCRIPTION
[DBUS_BRIDGE]		
LAUNCH	/etc/skyhub/default.launch	ROS2 launch script to start up needed nodes
LOGS_LEVEL	info	Detalization of log messages for nodes
LOGS_PATH	/var/skyhub/logs	Where to create logs for ROS2 logs
ROS_ENV	/opt/ugcs/ros/galactic	Where to look for installed ROS 2 framework
SDK_PATH	/opt/ugcs/skyhub-ros	Where to look for installed Skyhub SDK
MODULES_PATH	/var/skyhub/modules	Where to look for ROS 2 packages for payloads

Guidelines for navigation values choosing

Skyhub provides a number of parameters that allow you to adjust the flight algorithms. This section provides a description of the expected impact of the provided parameters, but the specific values are entirely dependent on the user's task and the actual conditions: wind speed, altitude, acceptable accuracy and required speed.

HORIZONTAL_ACCEL_MSS parameter

If the drone is heavy and it is important to maintain smoothness during acceleration and deceleration, it is better to set a value not exceeding 1 m/s2 at the waypoints. At the same time, long acceleration and deceleration can increase the total flight time, which will negatively affect the work productivity. The maximum value is 10 m/s2, but there is a possibility to run into the limitations of the autopilot/drone, as it may not be able to provide the specified speed and acceleration. That is, the target point will move ahead of the current position and the drone will have to catch up with it, exceeding the specified speed on the route. This is also true for stopping at a point: the drone can fly over it (overshoot).

VERTICAL_ACCEL_MSS parameter

There are two considerations of choosing the values of this parameter. First, the trajectories (smooth and continuous functions of time, twice differentiable) will be built based on the restriction on the allowable acceleration. Those, if the drone, while following the route, must descend or climb at the speed specified in the mission, then the speed will change smoothly according to this parameter. Secondly, the sudden change of the ground level in the Terrain Following flight mode will be smoothed out so that the acceleration does not exceed this value. This is an important point: if the acceleration is low, the drone can smooth out the trajectory too much before or after the obstacle. Therefore, for flying over water and a smooth surface, the acceleration value should be made in the region of 0.5 - 1 m/s2, and for flying over a relief surface, it is worth increasing the value of the parameter - up to about 2-3 m/s2. The exact value should be selected empirically.

YAW_RATE_DS parameter

The turn rate (Yaw) is smoothed by the PID controller before being passed to the flight controller. The value specified in this parameter will be close to the targeted, but may be less at the beginning and end of the turn maneuver.

VELOCITY_FEED_FORWARD parameter

Due to technical limitations, it is not possible to explicitly set the controller with exact acceleration value to decelerate or accelerate: to compensate, a value is transmitted slightly more or less than the targeted speeds so that the controller has time to provide more accurate trajectory following. With a well-performing autopilot (reacting quickly and clearly following speed targets), the value of the VELOCITY_FEED_FORWARD parameter should be close to or equal to 0. In some cases, it allows you to compensate for the drop in altitude during descent.

POS_P parameter

The higher the value, the more accurately the device follows the trajectory, but the higher the probability of oscillations. Horizontal oscillations look like pecks in the direction of flight. If the value is small, then the device moves unsteadily in a straight line or can serpentine or overshoot waypoints during StopAndTurn maneuvers.

POS_Z_P parameter

Higher values allow you to follow the target trajectory more closely, but may cause vertical oscillation. Vertical oscillations while descending look like fading and jumps with a characteristic sound (Bzz - bzzz - bzzz...). If the value is small, then the speed changes sluggishly and the obstacles avoiding can be very smooth and with a noticeable delay.

ACCEPTANCE_RADIUS_M parameter

If the distance between the current position of the drone and the target waypoint is less than the specified parameter, then the waypoint is considered reached. At the moment of reaching the notification of this event will be sent to the ground control station and the device can proceed to build a trajectory to the next point. If the reached point was the last one, then the device will keep the position inside the ball with the given radius.

LEAN_COMPENSATION parameter

The influence of the parameter increases with flight altitude increasing. At low altitudes, the difference lies within the altitude hold error.

Note: Please, contact our support team if additional informantion is required.
8 · LEGAL NOTICE

SPH Engineering reserves the right to make corrections, enhancements, improvements and other changes to its products and services and to discontinue any product or service.

Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of our products in its applications, notwithstanding any applications-related information or support that may be provided by SPH Engineering. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify SPH Engineering and its representatives against any damages arising out of the use of any our products in safety-critical applications.

Disclaimer

Information in this document is subject to change without notice and does not represent a commitment on the part of SPH Engineering. SPH Engineering provides this document "as is" without warranty of any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or merchantability for a particular purpose. SPH Engineering may make improvements and/or changes in this document or in the product(s) and/or the program(s) described in this document at any time.

Trademarks

UgCS is a registered trademark of SPH Engineering.

All other trademarks and registered trademarks mentioned in this document are the property of their respective owners.

Document License

Document contents are licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

$$\odot$$

Latest documentation is available on integrated.ugcs.com

ugcs@ugcs.com

integrated.ugcs.com www.ugcs.com